YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| thrice(0(x0)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x0))))))))))))) |
| thrice(s(x0)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x0)))))))))))))))))) |
| half(0(x0)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x0)))))))))))) |
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
| sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) |
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(x0))))) |
| 0(x0) | → | x0 |
| [sixtimes(x1)] | = | 0 · x1 + -∞ |
| [thrice(x1)] | = | 2 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| [half(x1)] | = | 1 · x1 + -∞ |
| [0(x1)] | = | 0 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
| sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) |
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(x0))))) |
| 0(x0) | → | x0 |
| [sixtimes(x1)] | = | 4 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| [half(x1)] | = | 1 · x1 + -∞ |
| [0(x1)] | = | 1 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) |
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) |
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(x0))))) |
final states:
{46, 2, 45, 21, 19, 1}
transitions:
| 33 | → | 54 |
| 33 | → | 35 |
| 10 | → | 64 |
| 10 | → | 12 |
| 41 | → | 49 |
| 3 | → | 74 |
| 3 | → | 25 |
| 3 | → | 57 |
| 57 | → | 25 |
| 9 | → | 65 |
| 5 | → | 62 |
| 5 | → | 7 |
| 65 | → | 13 |
| 55 | → | 36 |
| 31 | → | 33 |
| 49 | → | 21 |
| 1 | → | 71 |
| 1 | → | 65 |
| 1 | → | 9 |
| 71 | → | 17 |
| 13 | → | 1 |
| 13 | → | 17 |
| 13 | → | 71 |
| 26 | → | 28 |
| 21 | → | 29 |
| 22 | → | 56 |
| 22 | → | 24 |
| 75 | → | 26 |
| 2 | → | 4 |
| 2 | → | 75 |
| 2 | → | 45 |
| 4 | → | 63 |
| 16 | → | 19 |
| 14 | → | 70 |
| 14 | → | 16 |
| 63 | → | 8 |
| 30 | → | 36 |
| 30 | → | 55 |
| 42 | → | 48 |
| 42 | → | 44 |
| 46 | → | 45 |
| 17 | → | 1 |
| 19 | → | 71 |
| half0(8) | → | 9 |
| sixtimes0(28) | → | 29 |
| s0(33) | → | 34 |
| s0(23) | → | 47 |
| s0(26) | → | 27 |
| s0(42) | → | 43 |
| s0(41) | → | 42 |
| s0(14) | → | 15 |
| s0(30) | → | 31 |
| s0(37) | → | 38 |
| s0(38) | → | 39 |
| s0(36) | → | 37 |
| s0(29) | → | 30 |
| s0(3) | → | 22 |
| s0(40) | → | 41 |
| s0(9) | → | 10 |
| s0(13) | → | 14 |
| s0(31) | → | 32 |
| s0(5) | → | 6 |
| s0(17) | → | 18 |
| s0(10) | → | 11 |
| s0(2) | → | 3 |
| s0(4) | → | 5 |
| s0(39) | → | 40 |
| s0(16) | → | 20 |
| s0(22) | → | 23 |
| 00(47) | → | 46 |
| p1(64) | → | 65 |
| p1(70) | → | 71 |
| p1(48) | → | 49 |
| p1(54) | → | 55 |
| p1(62) | → | 63 |
| p1(74) | → | 75 |
| p1(56) | → | 57 |
| f60 | → | 2 |
| p0(2) | → | 45 |
| p0(18) | → | 1 |
| p0(24) | → | 25 |
| p0(25) | → | 26 |
| p0(43) | → | 44 |
| p0(3) | → | 4 |
| p0(11) | → | 12 |
| p0(6) | → | 7 |
| p0(23) | → | 24 |
| p0(32) | → | 33 |
| p0(7) | → | 8 |
| p0(15) | → | 16 |
| p0(27) | → | 28 |
| p0(35) | → | 36 |
| p0(20) | → | 19 |
| p0(12) | → | 13 |
| p0(34) | → | 35 |
| p0(44) | → | 21 |
| p0(16) | → | 17 |