YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| thrice(0(x0)) | → | p(s(p(p(p(s(s(s(0(p(s(p(s(x0))))))))))))) | 
| thrice(s(x0)) | → | p(p(s(s(half(p(p(s(s(p(s(sixtimes(p(s(p(p(s(s(x0)))))))))))))))))) | 
| half(0(x0)) | → | p(p(s(s(p(s(0(p(s(s(s(s(x0)))))))))))) | 
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) | 
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) | 
| sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) | 
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) | 
| p(p(s(x0))) | → | p(x0) | 
| p(s(x0)) | → | x0 | 
| p(0(x0)) | → | 0(s(s(s(s(x0))))) | 
| 0(x0) | → | x0 | 
| [sixtimes(x1)] | = | 0 · x1 + -∞ | 
| [thrice(x1)] | = | 2 · x1 + -∞ | 
| [p(x1)] | = | 0 · x1 + -∞ | 
| [half(x1)] | = | 1 · x1 + -∞ | 
| [0(x1)] | = | 0 · x1 + -∞ | 
| [s(x1)] | = | 0 · x1 + -∞ | 
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) | 
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) | 
| sixtimes(0(x0)) | → | p(s(p(s(0(s(s(s(s(s(p(s(p(s(x0)))))))))))))) | 
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) | 
| p(p(s(x0))) | → | p(x0) | 
| p(s(x0)) | → | x0 | 
| p(0(x0)) | → | 0(s(s(s(s(x0))))) | 
| 0(x0) | → | x0 | 
| [sixtimes(x1)] | = | 4 · x1 + -∞ | 
| [p(x1)] | = | 0 · x1 + -∞ | 
| [half(x1)] | = | 1 · x1 + -∞ | 
| [0(x1)] | = | 1 · x1 + -∞ | 
| [s(x1)] | = | 0 · x1 + -∞ | 
| half(s(x0)) | → | p(s(p(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0))))))))))))))))) | 
| half(s(s(x0))) | → | p(s(p(s(s(p(p(s(s(half(p(p(s(s(p(s(x0)))))))))))))))) | 
| sixtimes(s(x0)) | → | p(p(s(s(s(s(s(s(s(p(p(s(p(s(s(s(sixtimes(p(s(p(p(p(s(s(s(x0))))))))))))))))))))))))) | 
| p(p(s(x0))) | → | p(x0) | 
| p(s(x0)) | → | x0 | 
| p(0(x0)) | → | 0(s(s(s(s(x0))))) | 
final states:
{46, 2, 45, 21, 19, 1}
transitions:
| 33 | → | 54 | 
| 33 | → | 35 | 
| 10 | → | 64 | 
| 10 | → | 12 | 
| 41 | → | 49 | 
| 3 | → | 74 | 
| 3 | → | 25 | 
| 3 | → | 57 | 
| 57 | → | 25 | 
| 9 | → | 65 | 
| 5 | → | 62 | 
| 5 | → | 7 | 
| 65 | → | 13 | 
| 55 | → | 36 | 
| 31 | → | 33 | 
| 49 | → | 21 | 
| 1 | → | 71 | 
| 1 | → | 65 | 
| 1 | → | 9 | 
| 71 | → | 17 | 
| 13 | → | 1 | 
| 13 | → | 17 | 
| 13 | → | 71 | 
| 26 | → | 28 | 
| 21 | → | 29 | 
| 22 | → | 56 | 
| 22 | → | 24 | 
| 75 | → | 26 | 
| 2 | → | 4 | 
| 2 | → | 75 | 
| 2 | → | 45 | 
| 4 | → | 63 | 
| 16 | → | 19 | 
| 14 | → | 70 | 
| 14 | → | 16 | 
| 63 | → | 8 | 
| 30 | → | 36 | 
| 30 | → | 55 | 
| 42 | → | 48 | 
| 42 | → | 44 | 
| 46 | → | 45 | 
| 17 | → | 1 | 
| 19 | → | 71 | 
| half0(8) | → | 9 | 
| sixtimes0(28) | → | 29 | 
| s0(33) | → | 34 | 
| s0(23) | → | 47 | 
| s0(26) | → | 27 | 
| s0(42) | → | 43 | 
| s0(41) | → | 42 | 
| s0(14) | → | 15 | 
| s0(30) | → | 31 | 
| s0(37) | → | 38 | 
| s0(38) | → | 39 | 
| s0(36) | → | 37 | 
| s0(29) | → | 30 | 
| s0(3) | → | 22 | 
| s0(40) | → | 41 | 
| s0(9) | → | 10 | 
| s0(13) | → | 14 | 
| s0(31) | → | 32 | 
| s0(5) | → | 6 | 
| s0(17) | → | 18 | 
| s0(10) | → | 11 | 
| s0(2) | → | 3 | 
| s0(4) | → | 5 | 
| s0(39) | → | 40 | 
| s0(16) | → | 20 | 
| s0(22) | → | 23 | 
| 00(47) | → | 46 | 
| p1(64) | → | 65 | 
| p1(70) | → | 71 | 
| p1(48) | → | 49 | 
| p1(54) | → | 55 | 
| p1(62) | → | 63 | 
| p1(74) | → | 75 | 
| p1(56) | → | 57 | 
| f60 | → | 2 | 
| p0(2) | → | 45 | 
| p0(18) | → | 1 | 
| p0(24) | → | 25 | 
| p0(25) | → | 26 | 
| p0(43) | → | 44 | 
| p0(3) | → | 4 | 
| p0(11) | → | 12 | 
| p0(6) | → | 7 | 
| p0(23) | → | 24 | 
| p0(32) | → | 33 | 
| p0(7) | → | 8 | 
| p0(15) | → | 16 | 
| p0(27) | → | 28 | 
| p0(35) | → | 36 | 
| p0(20) | → | 19 | 
| p0(12) | → | 13 | 
| p0(34) | → | 35 | 
| p0(44) | → | 21 | 
| p0(16) | → | 17 |