YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| twoto(0(x0)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0)))))))))))))))) |
| twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
| twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
| twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
| 0(x0) | → | x0 |
| [twice(x1)] | = | 0 · x1 + -∞ |
| [twoto(x1)] | = | 0 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| [0(x1)] | = | 1 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| twoto(0(x0)) | → | p(p(s(s(s(p(p(p(s(s(s(0(p(p(s(s(x0)))))))))))))))) |
| twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
| twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
| twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
| [twice(x1)] | = | 0 · x1 + -∞ |
| [twoto(x1)] | = | 14 · x1 + -∞ |
| [p(x1)] | = | 0 · x1 + -∞ |
| [0(x1)] | = | 0 · x1 + -∞ |
| [s(x1)] | = | 0 · x1 + -∞ |
| twoto(s(x0)) | → | p(p(s(s(p(p(p(s(s(s(twice(p(p(s(s(p(p(p(s(s(s(twoto(p(s(p(s(x0)))))))))))))))))))))))))) |
| twice(0(x0)) | → | p(s(p(s(0(s(p(s(s(s(s(p(s(x0))))))))))))) |
| twice(s(x0)) | → | s(p(p(p(p(s(s(s(s(s(twice(p(s(p(s(p(s(p(s(x0))))))))))))))))))) |
| p(p(s(x0))) | → | p(x0) |
| p(s(x0)) | → | x0 |
| p(0(x0)) | → | 0(s(s(s(s(p(s(x0))))))) |
final states:
{54, 2, 53, 38, 28, 1}
transitions:
| 78 | → | 24 |
| 25 | → | 71 |
| 25 | → | 27 |
| 80 | → | 51 |
| 18 | → | 78 |
| 9 | → | 63 |
| 9 | → | 11 |
| 34 | → | 36 |
| 34 | → | 53 |
| 20 | → | 61 |
| 20 | → | 22 |
| 62 | → | 23 |
| 1 | → | 70 |
| 1 | → | 13 |
| 1 | → | 86 |
| 1 | → | 7 |
| 40 | → | 42 |
| 8 | → | 85 |
| 8 | → | 64 |
| 13 | → | 17 |
| 13 | → | 70 |
| 44 | → | 52 |
| 44 | → | 88 |
| 38 | → | 43 |
| 86 | → | 13 |
| 36 | → | 28 |
| 72 | → | 1 |
| 6 | → | 40 |
| 88 | → | 52 |
| 2 | → | 4 |
| 2 | → | 53 |
| 4 | → | 6 |
| 28 | → | 43 |
| 45 | → | 87 |
| 45 | → | 51 |
| 45 | → | 80 |
| 14 | → | 69 |
| 14 | → | 16 |
| 7 | → | 86 |
| 30 | → | 32 |
| 64 | → | 12 |
| 46 | → | 79 |
| 46 | → | 56 |
| 47 | → | 55 |
| 47 | → | 49 |
| 24 | → | 1 |
| 24 | → | 72 |
| 19 | → | 77 |
| 19 | → | 23 |
| 19 | → | 62 |
| 70 | → | 17 |
| 56 | → | 50 |
| twoto0(6) | → | 7 |
| 00(31) | → | 54 |
| 00(33) | → | 34 |
| twice0(42) | → | 43 |
| twice0(17) | → | 18 |
| p1(87) | → | 88 |
| p1(61) | → | 62 |
| p1(63) | → | 64 |
| p1(69) | → | 70 |
| p1(85) | → | 86 |
| p1(79) | → | 80 |
| p1(77) | → | 78 |
| p1(55) | → | 56 |
| p1(71) | → | 72 |
| p0(11) | → | 12 |
| p0(22) | → | 23 |
| p0(37) | → | 28 |
| p0(50) | → | 51 |
| p0(3) | → | 4 |
| p0(51) | → | 52 |
| p0(15) | → | 16 |
| p0(5) | → | 6 |
| p0(23) | → | 24 |
| p0(26) | → | 27 |
| p0(16) | → | 17 |
| p0(39) | → | 40 |
| p0(49) | → | 50 |
| p0(10) | → | 11 |
| p0(2) | → | 53 |
| p0(31) | → | 32 |
| p0(48) | → | 49 |
| p0(27) | → | 1 |
| p0(12) | → | 13 |
| p0(35) | → | 36 |
| p0(21) | → | 22 |
| p0(41) | → | 42 |
| s0(2) | → | 3 |
| s0(18) | → | 19 |
| s0(46) | → | 47 |
| s0(9) | → | 10 |
| s0(19) | → | 20 |
| s0(30) | → | 31 |
| s0(36) | → | 37 |
| s0(24) | → | 25 |
| s0(25) | → | 26 |
| s0(43) | → | 44 |
| s0(4) | → | 5 |
| s0(8) | → | 9 |
| s0(6) | → | 39 |
| s0(14) | → | 15 |
| s0(32) | → | 33 |
| s0(29) | → | 30 |
| s0(7) | → | 8 |
| s0(52) | → | 38 |
| s0(45) | → | 46 |
| s0(20) | → | 21 |
| s0(40) | → | 41 |
| s0(34) | → | 35 |
| s0(44) | → | 45 |
| s0(5) | → | 29 |
| s0(13) | → | 14 |
| s0(47) | → | 48 |
| f50 | → | 2 |