YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a(a(b(x0))) | 
→ | 
c(d(x0)) | 
| 
b(e(b(x0))) | 
→ | 
e(d(x0)) | 
| 
b(d(x0)) | 
→ | 
e(b(x0)) | 
| 
b(b(b(x0))) | 
→ | 
e(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
d(e(x0)) | 
| 
d(x0) | 
→ | 
b(e(x0)) | 
| 
c(d(a(x0))) | 
→ | 
c(x0) | 
| 
d(c(x0)) | 
→ | 
c(d(a(x0))) | 
| 
a(x0) | 
→ | 
e(b(x0)) | 
Proof
1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(a(a(x0))) | 
→ | 
d(c(x0)) | 
| 
b(e(b(x0))) | 
→ | 
d(e(x0)) | 
| 
d(b(x0)) | 
→ | 
b(e(x0)) | 
| 
b(b(b(x0))) | 
→ | 
e(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
e(d(x0)) | 
| 
d(x0) | 
→ | 
e(b(x0)) | 
| 
a(d(c(x0))) | 
→ | 
c(x0) | 
| 
c(d(x0)) | 
→ | 
a(d(c(x0))) | 
| 
a(x0) | 
→ | 
b(e(x0)) | 
1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the naturals
| [e(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
b(e(b(x0))) | 
→ | 
d(e(x0)) | 
| 
d(b(x0)) | 
→ | 
b(e(x0)) | 
| 
b(b(b(x0))) | 
→ | 
e(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
e(d(x0)) | 
| 
d(x0) | 
→ | 
e(b(x0)) | 
| 
a(d(c(x0))) | 
→ | 
c(x0) | 
| 
c(d(x0)) | 
→ | 
a(d(c(x0))) | 
| 
a(x0) | 
→ | 
b(e(x0)) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [e(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
b(e(b(x0))) | 
→ | 
d(e(x0)) | 
| 
d(b(x0)) | 
→ | 
b(e(x0)) | 
| 
b(b(b(x0))) | 
→ | 
e(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
e(d(x0)) | 
| 
d(x0) | 
→ | 
e(b(x0)) | 
| 
a(d(c(x0))) | 
→ | 
c(x0) | 
| 
a(x0) | 
→ | 
b(e(x0)) | 
          remain.
        1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [e(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
14 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
b(e(b(x0))) | 
→ | 
d(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
e(d(x0)) | 
| 
d(x0) | 
→ | 
e(b(x0)) | 
          remain.
        1.1.1.1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
b#(e(b(x0))) | 
→ | 
e#(x0) | 
| 
b#(e(b(x0))) | 
→ | 
d#(e(x0)) | 
| 
e#(e(e(x0))) | 
→ | 
d#(x0) | 
| 
e#(e(e(x0))) | 
→ | 
e#(d(x0)) | 
| 
d#(x0) | 
→ | 
b#(x0) | 
| 
d#(x0) | 
→ | 
e#(b(x0)) | 
1.1.1.1.1.1 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over the arctic semiring over the integers
| [e(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b#(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [d#(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [e#(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
            together with the usable
            rules
| 
b(e(b(x0))) | 
→ | 
d(e(x0)) | 
| 
e(e(e(x0))) | 
→ | 
e(d(x0)) | 
| 
d(x0) | 
→ | 
e(b(x0)) | 
            (w.r.t. the implicit argument filter of the reduction pair),
          
          the
          pairs
| 
b#(e(b(x0))) | 
→ | 
d#(e(x0)) | 
| 
e#(e(e(x0))) | 
→ | 
d#(x0) | 
| 
e#(e(e(x0))) | 
→ | 
e#(d(x0)) | 
          remain.
        1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
        component.