YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
|
a(a(b(x0))) |
→ |
c(d(x0)) |
|
b(e(b(x0))) |
→ |
e(d(x0)) |
|
b(d(x0)) |
→ |
e(b(x0)) |
|
b(b(b(x0))) |
→ |
e(e(x0)) |
|
e(e(e(x0))) |
→ |
d(e(x0)) |
|
d(x0) |
→ |
b(e(x0)) |
|
c(d(a(x0))) |
→ |
c(x0) |
|
d(c(x0)) |
→ |
c(d(a(x0))) |
|
a(x0) |
→ |
e(b(x0)) |
Proof
1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
|
b(a(a(x0))) |
→ |
d(c(x0)) |
|
b(e(b(x0))) |
→ |
d(e(x0)) |
|
d(b(x0)) |
→ |
b(e(x0)) |
|
b(b(b(x0))) |
→ |
e(e(x0)) |
|
e(e(e(x0))) |
→ |
e(d(x0)) |
|
d(x0) |
→ |
e(b(x0)) |
|
a(d(c(x0))) |
→ |
c(x0) |
|
c(d(x0)) |
→ |
a(d(c(x0))) |
|
a(x0) |
→ |
b(e(x0)) |
1.1 Rule Removal
Using the
linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1
over the naturals
| [e(x1)] |
= |
·
x1 +
|
| [a(x1)] |
= |
·
x1 +
|
| [c(x1)] |
= |
·
x1 +
|
| [b(x1)] |
= |
·
x1 +
|
| [d(x1)] |
= |
·
x1 +
|
the
rules
|
b(e(b(x0))) |
→ |
d(e(x0)) |
|
d(b(x0)) |
→ |
b(e(x0)) |
|
b(b(b(x0))) |
→ |
e(e(x0)) |
|
e(e(e(x0))) |
→ |
e(d(x0)) |
|
d(x0) |
→ |
e(b(x0)) |
|
a(d(c(x0))) |
→ |
c(x0) |
|
c(d(x0)) |
→ |
a(d(c(x0))) |
|
a(x0) |
→ |
b(e(x0)) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1
over the arctic semiring over the integers
| [e(x1)] |
= |
·
x1 +
|
| [a(x1)] |
= |
·
x1 +
|
| [c(x1)] |
= |
·
x1 +
|
| [b(x1)] |
= |
·
x1 +
|
| [d(x1)] |
= |
·
x1 +
|
the
rules
|
b(e(b(x0))) |
→ |
d(e(x0)) |
|
d(b(x0)) |
→ |
b(e(x0)) |
|
b(b(b(x0))) |
→ |
e(e(x0)) |
|
e(e(e(x0))) |
→ |
e(d(x0)) |
|
d(x0) |
→ |
e(b(x0)) |
|
a(d(c(x0))) |
→ |
c(x0) |
|
a(x0) |
→ |
b(e(x0)) |
remain.
1.1.1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
| [e(x1)] |
= |
2 ·
x1 +
-∞
|
| [a(x1)] |
= |
5 ·
x1 +
-∞
|
| [c(x1)] |
= |
14 ·
x1 +
-∞
|
| [b(x1)] |
= |
2 ·
x1 +
-∞
|
| [d(x1)] |
= |
4 ·
x1 +
-∞
|
the
rules
|
b(e(b(x0))) |
→ |
d(e(x0)) |
|
e(e(e(x0))) |
→ |
e(d(x0)) |
|
d(x0) |
→ |
e(b(x0)) |
remain.
1.1.1.1.1 Dependency Pair Transformation
The following set of initial dependency pairs has been identified.
|
b#(e(b(x0))) |
→ |
e#(x0) |
|
b#(e(b(x0))) |
→ |
d#(e(x0)) |
|
e#(e(e(x0))) |
→ |
d#(x0) |
|
e#(e(e(x0))) |
→ |
e#(d(x0)) |
|
d#(x0) |
→ |
b#(x0) |
|
d#(x0) |
→ |
e#(b(x0)) |
1.1.1.1.1.1 Reduction Pair Processor with Usable Rules
Using the linear polynomial interpretation over the arctic semiring over the integers
| [e(x1)] |
= |
4 ·
x1 +
-∞
|
| [b#(x1)] |
= |
4 ·
x1 +
-∞
|
| [b(x1)] |
= |
4 ·
x1 +
-∞
|
| [d#(x1)] |
= |
8 ·
x1 +
-∞
|
| [e#(x1)] |
= |
0 ·
x1 +
-∞
|
| [d(x1)] |
= |
8 ·
x1 +
-∞
|
together with the usable
rules
|
b(e(b(x0))) |
→ |
d(e(x0)) |
|
e(e(e(x0))) |
→ |
e(d(x0)) |
|
d(x0) |
→ |
e(b(x0)) |
(w.r.t. the implicit argument filter of the reduction pair),
the
pairs
|
b#(e(b(x0))) |
→ |
d#(e(x0)) |
|
e#(e(e(x0))) |
→ |
d#(x0) |
|
e#(e(e(x0))) |
→ |
e#(d(x0)) |
remain.
1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
component.