YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| a(a(b(b(x0)))) | → | C(C(x0)) |
| b(b(c(c(x0)))) | → | A(A(x0)) |
| c(c(a(a(x0)))) | → | B(B(x0)) |
| A(A(C(C(x0)))) | → | b(b(x0)) |
| C(C(B(B(x0)))) | → | a(a(x0)) |
| B(B(A(A(x0)))) | → | c(c(x0)) |
| a(a(a(a(a(a(a(a(a(a(x0)))))))))) | → | A(A(A(A(A(A(x0)))))) |
| A(A(A(A(A(A(A(A(x0)))))))) | → | a(a(a(a(a(a(a(a(x0)))))))) |
| b(b(b(b(b(b(b(b(b(b(x0)))))))))) | → | B(B(B(B(B(B(x0)))))) |
| B(B(B(B(B(B(B(B(x0)))))))) | → | b(b(b(b(b(b(b(b(x0)))))))) |
| c(c(c(c(c(c(c(c(c(c(x0)))))))))) | → | C(C(C(C(C(C(x0)))))) |
| C(C(C(C(C(C(C(C(x0)))))))) | → | c(c(c(c(c(c(c(c(x0)))))))) |
| B(B(a(a(a(a(a(a(a(a(x0)))))))))) | → | c(c(A(A(A(A(A(A(x0)))))))) |
| A(A(A(A(A(A(b(b(x0)))))))) | → | a(a(a(a(a(a(a(a(C(C(x0)))))))))) |
| C(C(b(b(b(b(b(b(b(b(x0)))))))))) | → | a(a(B(B(B(B(B(B(x0)))))))) |
| B(B(B(B(B(B(c(c(x0)))))))) | → | b(b(b(b(b(b(b(b(A(A(x0)))))))))) |
| A(A(c(c(c(c(c(c(c(c(x0)))))))))) | → | b(b(C(C(C(C(C(C(x0)))))))) |
| C(C(C(C(C(C(a(a(x0)))))))) | → | c(c(c(c(c(c(c(c(B(B(x0)))))))))) |
| a(a(A(A(x0)))) | → | x0 |
| A(A(a(a(x0)))) | → | x0 |
| b(b(B(B(x0)))) | → | x0 |
| B(B(b(b(x0)))) | → | x0 |
| c(c(C(C(x0)))) | → | x0 |
| C(C(c(c(x0)))) | → | x0 |
| [A(x1)] | = | 3 · x1 + -∞ |
| [a(x1)] | = | 2 · x1 + -∞ |
| [c(x1)] | = | 2 · x1 + -∞ |
| [B(x1)] | = | 3 · x1 + -∞ |
| [b(x1)] | = | 2 · x1 + -∞ |
| [C(x1)] | = | 3 · x1 + -∞ |
| B(B(a(a(a(a(a(a(a(a(x0)))))))))) | → | c(c(A(A(A(A(A(A(x0)))))))) |
| A(A(A(A(A(A(b(b(x0)))))))) | → | a(a(a(a(a(a(a(a(C(C(x0)))))))))) |
| C(C(b(b(b(b(b(b(b(b(x0)))))))))) | → | a(a(B(B(B(B(B(B(x0)))))))) |
| B(B(B(B(B(B(c(c(x0)))))))) | → | b(b(b(b(b(b(b(b(A(A(x0)))))))))) |
| A(A(c(c(c(c(c(c(c(c(x0)))))))))) | → | b(b(C(C(C(C(C(C(x0)))))))) |
| C(C(C(C(C(C(a(a(x0)))))))) | → | c(c(c(c(c(c(c(c(B(B(x0)))))))))) |
| a(a(a(a(a(a(a(a(B(B(x0)))))))))) | → | A(A(A(A(A(A(c(c(x0)))))))) |
| b(b(A(A(A(A(A(A(x0)))))))) | → | C(C(a(a(a(a(a(a(a(a(x0)))))))))) |
| b(b(b(b(b(b(b(b(C(C(x0)))))))))) | → | B(B(B(B(B(B(a(a(x0)))))))) |
| c(c(B(B(B(B(B(B(x0)))))))) | → | A(A(b(b(b(b(b(b(b(b(x0)))))))))) |
| c(c(c(c(c(c(c(c(A(A(x0)))))))))) | → | C(C(C(C(C(C(b(b(x0)))))))) |
| a(a(C(C(C(C(C(C(x0)))))))) | → | B(B(c(c(c(c(c(c(c(c(x0)))))))))) |
final states:
{42, 36, 26, 20, 10, 1}
transitions:
| 10 | → | 28 |
| 10 | → | 27 |
| 20 | → | 34 |
| 20 | → | 33 |
| 20 | → | 32 |
| 20 | → | 31 |
| 20 | → | 30 |
| 20 | → | 29 |
| 20 | → | 28 |
| 20 | → | 27 |
| 1 | → | 18 |
| 1 | → | 17 |
| 1 | → | 16 |
| 1 | → | 15 |
| 1 | → | 14 |
| 1 | → | 13 |
| 1 | → | 12 |
| 1 | → | 11 |
| 26 | → | 4 |
| 26 | → | 3 |
| 36 | → | 48 |
| 36 | → | 47 |
| 36 | → | 46 |
| 36 | → | 45 |
| 36 | → | 44 |
| 36 | → | 43 |
| 36 | → | 4 |
| 36 | → | 3 |
| 42 | → | 12 |
| 42 | → | 11 |
| f60 | → | 2 |
| b0(31) | → | 32 |
| b0(32) | → | 33 |
| b0(2) | → | 27 |
| b0(30) | → | 31 |
| b0(27) | → | 28 |
| b0(28) | → | 29 |
| b0(29) | → | 30 |
| b0(33) | → | 34 |
| c0(45) | → | 46 |
| c0(43) | → | 44 |
| c0(46) | → | 47 |
| c0(3) | → | 4 |
| c0(47) | → | 48 |
| c0(2) | → | 3 |
| c0(4) | → | 43 |
| c0(44) | → | 45 |
| C0(19) | → | 10 |
| C0(37) | → | 38 |
| C0(41) | → | 36 |
| C0(18) | → | 19 |
| C0(39) | → | 40 |
| C0(28) | → | 37 |
| C0(40) | → | 41 |
| C0(38) | → | 39 |
| a0(2) | → | 11 |
| a0(16) | → | 17 |
| a0(12) | → | 13 |
| a0(11) | → | 12 |
| a0(14) | → | 15 |
| a0(13) | → | 14 |
| a0(17) | → | 18 |
| a0(15) | → | 16 |
| A0(9) | → | 1 |
| A0(4) | → | 5 |
| A0(8) | → | 9 |
| A0(6) | → | 7 |
| A0(7) | → | 8 |
| A0(35) | → | 26 |
| A0(34) | → | 35 |
| A0(5) | → | 6 |
| B0(25) | → | 20 |
| B0(21) | → | 22 |
| B0(22) | → | 23 |
| B0(49) | → | 42 |
| B0(48) | → | 49 |
| B0(24) | → | 25 |
| B0(23) | → | 24 |
| B0(12) | → | 21 |