YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| a(a(b(b(x0)))) | → | C(C(x0)) | 
| b(b(c(c(x0)))) | → | A(A(x0)) | 
| c(c(a(a(x0)))) | → | B(B(x0)) | 
| A(A(C(C(x0)))) | → | b(b(x0)) | 
| C(C(B(B(x0)))) | → | a(a(x0)) | 
| B(B(A(A(x0)))) | → | c(c(x0)) | 
| a(a(a(a(a(a(a(a(a(a(x0)))))))))) | → | A(A(A(A(A(A(x0)))))) | 
| A(A(A(A(A(A(A(A(x0)))))))) | → | a(a(a(a(a(a(a(a(x0)))))))) | 
| b(b(b(b(b(b(b(b(b(b(x0)))))))))) | → | B(B(B(B(B(B(x0)))))) | 
| B(B(B(B(B(B(B(B(x0)))))))) | → | b(b(b(b(b(b(b(b(x0)))))))) | 
| c(c(c(c(c(c(c(c(c(c(x0)))))))))) | → | C(C(C(C(C(C(x0)))))) | 
| C(C(C(C(C(C(C(C(x0)))))))) | → | c(c(c(c(c(c(c(c(x0)))))))) | 
| B(B(a(a(a(a(a(a(a(a(x0)))))))))) | → | c(c(A(A(A(A(A(A(x0)))))))) | 
| A(A(A(A(A(A(b(b(x0)))))))) | → | a(a(a(a(a(a(a(a(C(C(x0)))))))))) | 
| C(C(b(b(b(b(b(b(b(b(x0)))))))))) | → | a(a(B(B(B(B(B(B(x0)))))))) | 
| B(B(B(B(B(B(c(c(x0)))))))) | → | b(b(b(b(b(b(b(b(A(A(x0)))))))))) | 
| A(A(c(c(c(c(c(c(c(c(x0)))))))))) | → | b(b(C(C(C(C(C(C(x0)))))))) | 
| C(C(C(C(C(C(a(a(x0)))))))) | → | c(c(c(c(c(c(c(c(B(B(x0)))))))))) | 
| a(a(A(A(x0)))) | → | x0 | 
| A(A(a(a(x0)))) | → | x0 | 
| b(b(B(B(x0)))) | → | x0 | 
| B(B(b(b(x0)))) | → | x0 | 
| c(c(C(C(x0)))) | → | x0 | 
| C(C(c(c(x0)))) | → | x0 | 
| [A(x1)] | = | 3 · x1 + -∞ | 
| [a(x1)] | = | 2 · x1 + -∞ | 
| [c(x1)] | = | 2 · x1 + -∞ | 
| [B(x1)] | = | 3 · x1 + -∞ | 
| [b(x1)] | = | 2 · x1 + -∞ | 
| [C(x1)] | = | 3 · x1 + -∞ | 
| B(B(a(a(a(a(a(a(a(a(x0)))))))))) | → | c(c(A(A(A(A(A(A(x0)))))))) | 
| A(A(A(A(A(A(b(b(x0)))))))) | → | a(a(a(a(a(a(a(a(C(C(x0)))))))))) | 
| C(C(b(b(b(b(b(b(b(b(x0)))))))))) | → | a(a(B(B(B(B(B(B(x0)))))))) | 
| B(B(B(B(B(B(c(c(x0)))))))) | → | b(b(b(b(b(b(b(b(A(A(x0)))))))))) | 
| A(A(c(c(c(c(c(c(c(c(x0)))))))))) | → | b(b(C(C(C(C(C(C(x0)))))))) | 
| C(C(C(C(C(C(a(a(x0)))))))) | → | c(c(c(c(c(c(c(c(B(B(x0)))))))))) | 
| a(a(a(a(a(a(a(a(B(B(x0)))))))))) | → | A(A(A(A(A(A(c(c(x0)))))))) | 
| b(b(A(A(A(A(A(A(x0)))))))) | → | C(C(a(a(a(a(a(a(a(a(x0)))))))))) | 
| b(b(b(b(b(b(b(b(C(C(x0)))))))))) | → | B(B(B(B(B(B(a(a(x0)))))))) | 
| c(c(B(B(B(B(B(B(x0)))))))) | → | A(A(b(b(b(b(b(b(b(b(x0)))))))))) | 
| c(c(c(c(c(c(c(c(A(A(x0)))))))))) | → | C(C(C(C(C(C(b(b(x0)))))))) | 
| a(a(C(C(C(C(C(C(x0)))))))) | → | B(B(c(c(c(c(c(c(c(c(x0)))))))))) | 
final states:
{42, 36, 26, 20, 10, 1}
transitions:
| 10 | → | 28 | 
| 10 | → | 27 | 
| 20 | → | 34 | 
| 20 | → | 33 | 
| 20 | → | 32 | 
| 20 | → | 31 | 
| 20 | → | 30 | 
| 20 | → | 29 | 
| 20 | → | 28 | 
| 20 | → | 27 | 
| 1 | → | 18 | 
| 1 | → | 17 | 
| 1 | → | 16 | 
| 1 | → | 15 | 
| 1 | → | 14 | 
| 1 | → | 13 | 
| 1 | → | 12 | 
| 1 | → | 11 | 
| 26 | → | 4 | 
| 26 | → | 3 | 
| 36 | → | 48 | 
| 36 | → | 47 | 
| 36 | → | 46 | 
| 36 | → | 45 | 
| 36 | → | 44 | 
| 36 | → | 43 | 
| 36 | → | 4 | 
| 36 | → | 3 | 
| 42 | → | 12 | 
| 42 | → | 11 | 
| f60 | → | 2 | 
| b0(31) | → | 32 | 
| b0(32) | → | 33 | 
| b0(2) | → | 27 | 
| b0(30) | → | 31 | 
| b0(27) | → | 28 | 
| b0(28) | → | 29 | 
| b0(29) | → | 30 | 
| b0(33) | → | 34 | 
| c0(45) | → | 46 | 
| c0(43) | → | 44 | 
| c0(46) | → | 47 | 
| c0(3) | → | 4 | 
| c0(47) | → | 48 | 
| c0(2) | → | 3 | 
| c0(4) | → | 43 | 
| c0(44) | → | 45 | 
| C0(19) | → | 10 | 
| C0(37) | → | 38 | 
| C0(41) | → | 36 | 
| C0(18) | → | 19 | 
| C0(39) | → | 40 | 
| C0(28) | → | 37 | 
| C0(40) | → | 41 | 
| C0(38) | → | 39 | 
| a0(2) | → | 11 | 
| a0(16) | → | 17 | 
| a0(12) | → | 13 | 
| a0(11) | → | 12 | 
| a0(14) | → | 15 | 
| a0(13) | → | 14 | 
| a0(17) | → | 18 | 
| a0(15) | → | 16 | 
| A0(9) | → | 1 | 
| A0(4) | → | 5 | 
| A0(8) | → | 9 | 
| A0(6) | → | 7 | 
| A0(7) | → | 8 | 
| A0(35) | → | 26 | 
| A0(34) | → | 35 | 
| A0(5) | → | 6 | 
| B0(25) | → | 20 | 
| B0(21) | → | 22 | 
| B0(22) | → | 23 | 
| B0(49) | → | 42 | 
| B0(48) | → | 49 | 
| B0(24) | → | 25 | 
| B0(23) | → | 24 | 
| B0(12) | → | 21 |