YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
2(7(x0)) | 
→ | 
1(8(x0)) | 
| 
2(8(1(x0))) | 
→ | 
8(x0) | 
| 
2(8(x0)) | 
→ | 
4(x0) | 
| 
5(9(x0)) | 
→ | 
0(x0) | 
| 
4(x0) | 
→ | 
5(2(3(x0))) | 
| 
5(3(x0)) | 
→ | 
6(0(x0)) | 
| 
2(8(x0)) | 
→ | 
7(x0) | 
| 
4(7(x0)) | 
→ | 
1(3(x0)) | 
| 
5(2(6(x0))) | 
→ | 
6(2(4(x0))) | 
| 
9(7(x0)) | 
→ | 
7(5(x0)) | 
| 
7(2(x0)) | 
→ | 
4(x0) | 
| 
7(0(x0)) | 
→ | 
9(3(x0)) | 
| 
6(9(x0)) | 
→ | 
9(x0) | 
| 
9(5(9(x0))) | 
→ | 
5(7(x0)) | 
| 
4(x0) | 
→ | 
9(6(6(x0))) | 
| 
9(x0) | 
→ | 
6(7(x0)) | 
| 
6(2(x0)) | 
→ | 
7(7(x0)) | 
| 
2(4(x0)) | 
→ | 
0(7(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
0(3(x0)) | 
→ | 
5(3(x0)) | 
Proof
1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
7(2(x0)) | 
→ | 
8(1(x0)) | 
| 
1(8(2(x0))) | 
→ | 
8(x0) | 
| 
8(2(x0)) | 
→ | 
4(x0) | 
| 
9(5(x0)) | 
→ | 
0(x0) | 
| 
4(x0) | 
→ | 
3(2(5(x0))) | 
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
8(2(x0)) | 
→ | 
7(x0) | 
| 
7(4(x0)) | 
→ | 
3(1(x0)) | 
| 
6(2(5(x0))) | 
→ | 
4(2(6(x0))) | 
| 
7(9(x0)) | 
→ | 
5(7(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(6(x0)) | 
→ | 
9(x0) | 
| 
9(5(9(x0))) | 
→ | 
7(5(x0)) | 
| 
4(x0) | 
→ | 
6(6(9(x0))) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
2(6(x0)) | 
→ | 
7(7(x0)) | 
| 
4(2(x0)) | 
→ | 
7(0(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the naturals
| [4(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [3(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [2(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [1(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [0(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [5(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [8(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
7(2(x0)) | 
→ | 
8(1(x0)) | 
| 
9(5(x0)) | 
→ | 
0(x0) | 
| 
4(x0) | 
→ | 
3(2(5(x0))) | 
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
7(4(x0)) | 
→ | 
3(1(x0)) | 
| 
6(2(5(x0))) | 
→ | 
4(2(6(x0))) | 
| 
7(9(x0)) | 
→ | 
5(7(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(6(x0)) | 
→ | 
9(x0) | 
| 
9(5(9(x0))) | 
→ | 
7(5(x0)) | 
| 
4(x0) | 
→ | 
6(6(9(x0))) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
2(6(x0)) | 
→ | 
7(7(x0)) | 
| 
4(2(x0)) | 
→ | 
7(0(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the naturals
| [4(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [3(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [2(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [1(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [0(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [5(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [8(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
7(2(x0)) | 
→ | 
8(1(x0)) | 
| 
9(5(x0)) | 
→ | 
0(x0) | 
| 
4(x0) | 
→ | 
3(2(5(x0))) | 
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
7(4(x0)) | 
→ | 
3(1(x0)) | 
| 
7(9(x0)) | 
→ | 
5(7(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(6(x0)) | 
→ | 
9(x0) | 
| 
9(5(9(x0))) | 
→ | 
7(5(x0)) | 
| 
4(x0) | 
→ | 
6(6(9(x0))) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
2(6(x0)) | 
→ | 
7(7(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [4(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [2(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [9(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [7(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [0(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [6(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [5(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [8(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
9(5(x0)) | 
→ | 
0(x0) | 
| 
4(x0) | 
→ | 
3(2(5(x0))) | 
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
7(9(x0)) | 
→ | 
5(7(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(6(x0)) | 
→ | 
9(x0) | 
| 
9(5(9(x0))) | 
→ | 
7(5(x0)) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [4(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [2(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [9(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [7(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [0(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [6(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [5(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(6(x0)) | 
→ | 
9(x0) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
6(6(x0)) | 
→ | 
3(x0) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [4(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [3(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [2(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [9(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [7(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [0(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [6(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [5(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
3(5(x0)) | 
→ | 
0(6(x0)) | 
| 
2(7(x0)) | 
→ | 
4(x0) | 
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [4(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [3(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [2(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [0(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [5(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
0(7(x0)) | 
→ | 
3(9(x0)) | 
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [3(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [0(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [5(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
9(x0) | 
→ | 
7(6(x0)) | 
| 
3(0(x0)) | 
→ | 
3(5(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [3(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [0(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [5(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
          the
          rule
          remains.
        1.1.1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [9(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [7(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [6(x1)] | 
 =  | 
 · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
          all rules could be removed.
        1.1.1.1.1.1.1.1.1.1.1 R is empty 
There are no rules in the TRS. Hence, it is terminating.