YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| 3(1(x0)) | → | 4(1(x0)) |
| 5(9(x0)) | → | 2(6(5(x0))) |
| 3(5(x0)) | → | 8(9(7(x0))) |
| 9(x0) | → | 3(2(3(x0))) |
| 8(4(x0)) | → | 6(x0) |
| 2(6(x0)) | → | 4(3(x0)) |
| 3(8(x0)) | → | 3(2(7(x0))) |
| 9(x0) | → | 5(0(2(x0))) |
| 8(8(4(x0))) | → | 1(9(x0)) |
| 7(1(x0)) | → | 6(9(x0)) |
| 3(9(x0)) | → | 9(3(x0)) |
| 7(5(x0)) | → | 1(0(x0)) |
| 1(3(x0)) | → | 1(4(x0)) |
| 9(5(x0)) | → | 5(6(2(x0))) |
| 5(3(x0)) | → | 7(9(8(x0))) |
| 9(x0) | → | 3(2(3(x0))) |
| 4(8(x0)) | → | 6(x0) |
| 6(2(x0)) | → | 3(4(x0)) |
| 8(3(x0)) | → | 7(2(3(x0))) |
| 9(x0) | → | 2(0(5(x0))) |
| 4(8(8(x0))) | → | 9(1(x0)) |
| 1(7(x0)) | → | 9(6(x0)) |
| 9(3(x0)) | → | 3(9(x0)) |
| 5(7(x0)) | → | 0(1(x0)) |
| [5(x1)] | = |
|
||||||||||||||||||
| [8(x1)] | = |
|
||||||||||||||||||
| [3(x1)] | = |
|
||||||||||||||||||
| [9(x1)] | = |
|
||||||||||||||||||
| [6(x1)] | = |
|
||||||||||||||||||
| [1(x1)] | = |
|
||||||||||||||||||
| [7(x1)] | = |
|
||||||||||||||||||
| [0(x1)] | = |
|
||||||||||||||||||
| [2(x1)] | = |
|
||||||||||||||||||
| [4(x1)] | = |
|
| 1(3(x0)) | → | 1(4(x0)) |
| 5(3(x0)) | → | 7(9(8(x0))) |
| 9(x0) | → | 3(2(3(x0))) |
| 6(2(x0)) | → | 3(4(x0)) |
| 8(3(x0)) | → | 7(2(3(x0))) |
| 9(x0) | → | 2(0(5(x0))) |
| 1(7(x0)) | → | 9(6(x0)) |
| 9(3(x0)) | → | 3(9(x0)) |
| 5(7(x0)) | → | 0(1(x0)) |
| [5(x1)] | = | 1 · x1 + -∞ |
| [8(x1)] | = | 0 · x1 + -∞ |
| [3(x1)] | = | 0 · x1 + -∞ |
| [9(x1)] | = | 1 · x1 + -∞ |
| [6(x1)] | = | 0 · x1 + -∞ |
| [1(x1)] | = | 1 · x1 + -∞ |
| [7(x1)] | = | 0 · x1 + -∞ |
| [0(x1)] | = | 0 · x1 + -∞ |
| [2(x1)] | = | 0 · x1 + -∞ |
| [4(x1)] | = | 0 · x1 + -∞ |
| 1(3(x0)) | → | 1(4(x0)) |
| 5(3(x0)) | → | 7(9(8(x0))) |
| 6(2(x0)) | → | 3(4(x0)) |
| 8(3(x0)) | → | 7(2(3(x0))) |
| 9(x0) | → | 2(0(5(x0))) |
| 1(7(x0)) | → | 9(6(x0)) |
| 9(3(x0)) | → | 3(9(x0)) |
| 5(7(x0)) | → | 0(1(x0)) |
| [5(x1)] | = | 0 · x1 + -∞ |
| [8(x1)] | = | 1 · x1 + -∞ |
| [3(x1)] | = | 2 · x1 + -∞ |
| [9(x1)] | = | 0 · x1 + -∞ |
| [6(x1)] | = | 2 · x1 + -∞ |
| [1(x1)] | = | 1 · x1 + -∞ |
| [7(x1)] | = | 1 · x1 + -∞ |
| [0(x1)] | = | 0 · x1 + -∞ |
| [2(x1)] | = | 0 · x1 + -∞ |
| [4(x1)] | = | 0 · x1 + -∞ |
| 5(3(x0)) | → | 7(9(8(x0))) |
| 6(2(x0)) | → | 3(4(x0)) |
| 8(3(x0)) | → | 7(2(3(x0))) |
| 9(x0) | → | 2(0(5(x0))) |
| 1(7(x0)) | → | 9(6(x0)) |
| 9(3(x0)) | → | 3(9(x0)) |
| 5(7(x0)) | → | 0(1(x0)) |
| 3(5(x0)) | → | 8(9(7(x0))) |
| 2(6(x0)) | → | 4(3(x0)) |
| 3(8(x0)) | → | 3(2(7(x0))) |
| 9(x0) | → | 5(0(2(x0))) |
| 7(1(x0)) | → | 6(9(x0)) |
| 3(9(x0)) | → | 9(3(x0)) |
| 7(5(x0)) | → | 1(0(x0)) |
final states:
{15, 14, 12, 9, 7, 5, 1}
transitions:
| 32 | → | 14 |
| 15 | → | 33 |
| 15 | → | 3 |
| 3 | → | 33 |
| 57 | → | 42 |
| 5 | → | 10 |
| 5 | → | 18 |
| 20 | → | 13 |
| 1 | → | 29 |
| 1 | → | 6 |
| 1 | → | 65 |
| 1 | → | 56 |
| 13 | → | 41 |
| 36 | → | 4 |
| 72 | → | 53 |
| 6 | → | 29 |
| 54 | → | 42 |
| 52 | → | 69 |
| 2 | → | 17 |
| 2 | → | 55 |
| 14 | → | 29 |
| 14 | → | 6 |
| 14 | → | 65 |
| 14 | → | 56 |
| 12 | → | 33 |
| 12 | → | 3 |
| 7 | → | 29 |
| 7 | → | 6 |
| 7 | → | 65 |
| 7 | → | 56 |
| 68 | → | 57 |
| 19 | → | 51 |
| 43 | → | 34 |
| 43 | → | 8 |
| 56 | → | 65 |
| 51(31) | → | 32 |
| 51(19) | → | 20 |
| 51(35) | → | 36 |
| 50(11) | → | 9 |
| 00(2) | → | 16 |
| 00(10) | → | 11 |
| 02(66) | → | 67 |
| 20(3) | → | 8 |
| 20(2) | → | 10 |
| 82(53) | → | 54 |
| 01(30) | → | 31 |
| 01(34) | → | 35 |
| 01(18) | → | 19 |
| 41(42) | → | 43 |
| 72(51) | → | 52 |
| 30(8) | → | 7 |
| 30(2) | → | 6 |
| 21(29) | → | 30 |
| 21(33) | → | 34 |
| 21(17) | → | 18 |
| 10(16) | → | 15 |
| 70(2) | → | 3 |
| 22(65) | → | 66 |
| 23(69) | → | 70 |
| 40(6) | → | 5 |
| 91(56) | → | 57 |
| 31(41) | → | 42 |
| 31(55) | → | 56 |
| f100 | → | 2 |
| 52(67) | → | 68 |
| 80(4) | → | 1 |
| 90(6) | → | 14 |
| 90(2) | → | 13 |
| 90(3) | → | 4 |
| 53(71) | → | 72 |
| 03(70) | → | 71 |
| 92(52) | → | 53 |
| 60(13) | → | 12 |