YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
Begin(a(b(a(b(b(x0)))))) | 
→ | 
Wait(Right1(x0)) | 
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(a(b(b(x0)))) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right5(x0)) | 
| 
Right1(b(End(x0))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right3(b(a(b(End(x0))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right5(b(a(b(a(b(End(x0))))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the naturals
| [Wait(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right5(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right1(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right2(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Left(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right4(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Aa(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Ab(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [End(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right3(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Begin(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
Begin(a(b(a(b(b(x0)))))) | 
→ | 
Wait(Right1(x0)) | 
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(a(b(b(x0)))) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right5(x0)) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [Wait(x1)] | 
 =  | 
7 · 
                    x1 + 
                -∞
             | 
| [Right5(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right2(x1)] | 
 =  | 
7 · 
                    x1 + 
                -∞
             | 
| [Left(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [Right4(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [Aa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ab(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [End(x1)] | 
 =  | 
13 · 
                    x1 + 
                -∞
             | 
| [Right3(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [Begin(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(a(b(b(x0)))) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right5(x0)) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [Wait(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right5(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right2(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Left(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right4(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Aa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ab(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [End(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Begin(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
          remain.
        1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(b(a(b(Begin(x0))))) | 
→ | 
Right2(Wait(x0)) | 
| 
b(b(Begin(x0))) | 
→ | 
Right4(Wait(x0)) | 
| 
End(a(b(Right2(x0)))) | 
→ | 
End(a(b(b(b(a(b(a(Left(x0))))))))) | 
| 
End(a(b(a(b(Right4(x0)))))) | 
→ | 
End(a(b(b(b(a(b(a(Left(x0))))))))) | 
| 
b(Right1(x0)) | 
→ | 
Right1(Ab(x0)) | 
| 
b(Right2(x0)) | 
→ | 
Right2(Ab(x0)) | 
| 
b(Right3(x0)) | 
→ | 
Right3(Ab(x0)) | 
| 
b(Right4(x0)) | 
→ | 
Right4(Ab(x0)) | 
| 
b(Right5(x0)) | 
→ | 
Right5(Ab(x0)) | 
| 
a(Right1(x0)) | 
→ | 
Right1(Aa(x0)) | 
| 
a(Right2(x0)) | 
→ | 
Right2(Aa(x0)) | 
| 
a(Right3(x0)) | 
→ | 
Right3(Aa(x0)) | 
| 
a(Right4(x0)) | 
→ | 
Right4(Aa(x0)) | 
| 
a(Right5(x0)) | 
→ | 
Right5(Aa(x0)) | 
| 
Left(Ab(x0)) | 
→ | 
b(Left(x0)) | 
| 
Left(Aa(x0)) | 
→ | 
a(Left(x0)) | 
| 
Left(Wait(x0)) | 
→ | 
Begin(x0) | 
| 
b(b(a(b(a(b(x0)))))) | 
→ | 
a(b(b(b(a(b(a(x0))))))) | 
1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Wait(x1)] | 
 =  | 
2 · 
                    x1 + 1 | 
| [Right5(x1)] | 
 =  | 
6 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
4 · 
                    x1 + 12 | 
| [Right2(x1)] | 
 =  | 
8 · 
                    x1 + 0 | 
| [Left(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Right4(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ab(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
4 · 
                    x1 + 3 | 
| [Begin(x1)] | 
 =  | 
2 · 
                    x1 + 1 | 
          the
          rules
| 
b(b(a(b(Begin(x0))))) | 
→ | 
Right2(Wait(x0)) | 
| 
b(b(Begin(x0))) | 
→ | 
Right4(Wait(x0)) | 
| 
End(a(b(Right2(x0)))) | 
→ | 
End(a(b(b(b(a(b(a(Left(x0))))))))) | 
| 
End(a(b(a(b(Right4(x0)))))) | 
→ | 
End(a(b(b(b(a(b(a(Left(x0))))))))) | 
| 
b(Right2(x0)) | 
→ | 
Right2(Ab(x0)) | 
| 
b(Right4(x0)) | 
→ | 
Right4(Ab(x0)) | 
| 
b(Right5(x0)) | 
→ | 
Right5(Ab(x0)) | 
| 
a(Right1(x0)) | 
→ | 
Right1(Aa(x0)) | 
| 
a(Right2(x0)) | 
→ | 
Right2(Aa(x0)) | 
| 
a(Right3(x0)) | 
→ | 
Right3(Aa(x0)) | 
| 
a(Right4(x0)) | 
→ | 
Right4(Aa(x0)) | 
| 
a(Right5(x0)) | 
→ | 
Right5(Aa(x0)) | 
| 
Left(Ab(x0)) | 
→ | 
b(Left(x0)) | 
| 
Left(Aa(x0)) | 
→ | 
a(Left(x0)) | 
| 
Left(Wait(x0)) | 
→ | 
Begin(x0) | 
| 
b(b(a(b(a(b(x0)))))) | 
→ | 
a(b(b(b(a(b(a(x0))))))) | 
          remain.
        1.1.1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Wait(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right5(x1)] | 
 =  | 
8 · 
                    x1 + 7 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
2 · 
                    x1 + 5 | 
| [Right2(x1)] | 
 =  | 
8 · 
                    x1 + 14 | 
| [Left(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 2 | 
| [Right4(x1)] | 
 =  | 
4 · 
                    x1 + 6 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ab(x1)] | 
 =  | 
2 · 
                    x1 + 2 | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
8 · 
                    x1 + 2 | 
| [Begin(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
          the
          rules
| 
Begin(b(a(b(b(x0))))) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right4(x0)) | 
| 
Right2(b(a(End(x0)))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right4(b(a(b(a(End(x0)))))) | 
→ | 
Left(a(b(a(b(b(b(a(End(x0))))))))) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
b(a(b(a(b(b(x0)))))) | 
→ | 
a(b(a(b(b(b(a(x0))))))) | 
          remain.
        1.1.1.1.1.1.1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
Begin#(b(a(b(b(x0))))) | 
→ | 
Right2#(x0) | 
| 
Begin#(b(a(b(b(x0))))) | 
→ | 
Wait#(Right2(x0)) | 
| 
Begin#(b(b(x0))) | 
→ | 
Right4#(x0) | 
| 
Begin#(b(b(x0))) | 
→ | 
Wait#(Right4(x0)) | 
| 
Right2#(b(a(End(x0)))) | 
→ | 
b#(b(a(End(x0)))) | 
| 
Right2#(b(a(End(x0)))) | 
→ | 
b#(b(b(a(End(x0))))) | 
| 
Right2#(b(a(End(x0)))) | 
→ | 
b#(a(b(b(b(a(End(x0))))))) | 
| 
Right4#(b(a(b(a(End(x0)))))) | 
→ | 
b#(b(a(End(x0)))) | 
| 
Right4#(b(a(b(a(End(x0)))))) | 
→ | 
b#(b(b(a(End(x0))))) | 
| 
Right4#(b(a(b(a(End(x0)))))) | 
→ | 
b#(a(b(b(b(a(End(x0))))))) | 
| 
Right2#(b(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(b(x0)) | 
→ | 
Ab#(Right2(x0)) | 
| 
Right4#(b(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(b(x0)) | 
→ | 
Ab#(Right4(x0)) | 
| 
Right1#(a(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(a(x0)) | 
→ | 
Aa#(Right1(x0)) | 
| 
Right2#(a(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(a(x0)) | 
→ | 
Aa#(Right2(x0)) | 
| 
Right3#(a(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(a(x0)) | 
→ | 
Aa#(Right3(x0)) | 
| 
Right4#(a(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(a(x0)) | 
→ | 
Aa#(Right4(x0)) | 
| 
Right5#(a(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(a(x0)) | 
→ | 
Aa#(Right5(x0)) | 
| 
Ab#(Left(x0)) | 
→ | 
b#(x0) | 
| 
Wait#(Left(x0)) | 
→ | 
Begin#(x0) | 
| 
b#(a(b(a(b(b(x0)))))) | 
→ | 
b#(a(x0)) | 
| 
b#(a(b(a(b(b(x0)))))) | 
→ | 
b#(b(a(x0))) | 
| 
b#(a(b(a(b(b(x0)))))) | 
→ | 
b#(b(b(a(x0)))) | 
| 
b#(a(b(a(b(b(x0)))))) | 
→ | 
b#(a(b(b(b(a(x0)))))) | 
1.1.1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 2
        components.