YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
P(x0) | 
→ | 
Q(Q(p(x0))) | 
| 
p(p(x0)) | 
→ | 
q(q(x0)) | 
| 
p(Q(Q(x0))) | 
→ | 
Q(Q(p(x0))) | 
| 
Q(p(q(x0))) | 
→ | 
q(p(Q(x0))) | 
| 
q(q(p(x0))) | 
→ | 
p(q(q(x0))) | 
| 
q(Q(x0)) | 
→ | 
x0 | 
| 
Q(q(x0)) | 
→ | 
x0 | 
| 
p(P(x0)) | 
→ | 
x0 | 
| 
P(p(x0)) | 
→ | 
x0 | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [q(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [P(x1)] | 
 =  | 
9 · 
                    x1 + 
                -∞
             | 
| [Q(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
p(p(x0)) | 
→ | 
q(q(x0)) | 
| 
p(Q(Q(x0))) | 
→ | 
Q(Q(p(x0))) | 
| 
Q(p(q(x0))) | 
→ | 
q(p(Q(x0))) | 
| 
q(q(p(x0))) | 
→ | 
p(q(q(x0))) | 
| 
q(Q(x0)) | 
→ | 
x0 | 
| 
Q(q(x0)) | 
→ | 
x0 | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [q(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Q(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
p(p(x0)) | 
→ | 
q(q(x0)) | 
| 
p(Q(Q(x0))) | 
→ | 
Q(Q(p(x0))) | 
| 
Q(p(q(x0))) | 
→ | 
q(p(Q(x0))) | 
| 
q(q(p(x0))) | 
→ | 
p(q(q(x0))) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [q(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Q(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
p(Q(Q(x0))) | 
→ | 
Q(Q(p(x0))) | 
| 
Q(p(q(x0))) | 
→ | 
q(p(Q(x0))) | 
| 
q(q(p(x0))) | 
→ | 
p(q(q(x0))) | 
          remain.
        1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
Q(Q(p(x0))) | 
→ | 
p(Q(Q(x0))) | 
| 
q(p(Q(x0))) | 
→ | 
Q(p(q(x0))) | 
| 
p(q(q(x0))) | 
→ | 
q(q(p(x0))) | 
1.1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 0.
        This is shown by the following automaton.
        
- 
final states:
{8, 5, 1}
 
- 
transitions:
| 5 | 
 →  | 
10 | 
| 5 | 
 →  | 
6 | 
| 1 | 
 →  | 
4 | 
| 1 | 
 →  | 
3 | 
| 8 | 
 →  | 
7 | 
| 8 | 
 →  | 
9 | 
| 
Q0(3) | 
 →  | 
4 | 
| 
Q0(7) | 
 →  | 
5 | 
| 
Q0(2) | 
 →  | 
3 | 
| 
f40
 | 
 →  | 
2 | 
| 
q0(2) | 
 →  | 
6 | 
| 
q0(9) | 
 →  | 
10 | 
| 
q0(10) | 
 →  | 
8 | 
| 
p0(6) | 
 →  | 
7 | 
| 
p0(2) | 
 →  | 
9 | 
| 
p0(4) | 
 →  | 
1 |