YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
|
P(x0) |
→ |
Q(Q(p(x0))) |
|
p(p(x0)) |
→ |
q(q(x0)) |
|
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
|
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
|
q(q(p(x0))) |
→ |
p(q(q(x0))) |
|
q(Q(x0)) |
→ |
x0 |
|
Q(q(x0)) |
→ |
x0 |
|
p(P(x0)) |
→ |
x0 |
|
P(p(x0)) |
→ |
x0 |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] |
= |
0 ·
x1 +
-∞
|
| [q(x1)] |
= |
0 ·
x1 +
-∞
|
| [P(x1)] |
= |
9 ·
x1 +
-∞
|
| [Q(x1)] |
= |
0 ·
x1 +
-∞
|
the
rules
|
p(p(x0)) |
→ |
q(q(x0)) |
|
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
|
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
|
q(q(p(x0))) |
→ |
p(q(q(x0))) |
|
q(Q(x0)) |
→ |
x0 |
|
Q(q(x0)) |
→ |
x0 |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] |
= |
0 ·
x1 +
-∞
|
| [q(x1)] |
= |
0 ·
x1 +
-∞
|
| [Q(x1)] |
= |
1 ·
x1 +
-∞
|
the
rules
|
p(p(x0)) |
→ |
q(q(x0)) |
|
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
|
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
|
q(q(p(x0))) |
→ |
p(q(q(x0))) |
remain.
1.1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
| [p(x1)] |
= |
2 ·
x1 +
-∞
|
| [q(x1)] |
= |
1 ·
x1 +
-∞
|
| [Q(x1)] |
= |
4 ·
x1 +
-∞
|
the
rules
|
p(Q(Q(x0))) |
→ |
Q(Q(p(x0))) |
|
Q(p(q(x0))) |
→ |
q(p(Q(x0))) |
|
q(q(p(x0))) |
→ |
p(q(q(x0))) |
remain.
1.1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
|
Q(Q(p(x0))) |
→ |
p(Q(Q(x0))) |
|
q(p(Q(x0))) |
→ |
Q(p(q(x0))) |
|
p(q(q(x0))) |
→ |
q(q(p(x0))) |
1.1.1.1.1 Bounds
The given TRS is
match-bounded by 0.
This is shown by the following automaton.
-
final states:
{8, 5, 1}
-
transitions:
| 5 |
→ |
10 |
| 5 |
→ |
6 |
| 1 |
→ |
4 |
| 1 |
→ |
3 |
| 8 |
→ |
7 |
| 8 |
→ |
9 |
|
Q0(3) |
→ |
4 |
|
Q0(7) |
→ |
5 |
|
Q0(2) |
→ |
3 |
|
f40
|
→ |
2 |
|
q0(2) |
→ |
6 |
|
q0(9) |
→ |
10 |
|
q0(10) |
→ |
8 |
|
p0(6) |
→ |
7 |
|
p0(2) |
→ |
9 |
|
p0(4) |
→ |
1 |