YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
C(x0) | 
→ | 
c(x0) | 
| 
c(c(x0)) | 
→ | 
x0 | 
| 
b(b(x0)) | 
→ | 
B(x0) | 
| 
B(B(x0)) | 
→ | 
b(x0) | 
| 
c(B(c(b(c(x0))))) | 
→ | 
B(c(b(c(B(c(b(x0))))))) | 
| 
b(B(x0)) | 
→ | 
x0 | 
| 
B(b(x0)) | 
→ | 
x0 | 
| 
c(C(x0)) | 
→ | 
x0 | 
| 
C(c(x0)) | 
→ | 
x0 | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [B(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [C(x1)] | 
 =  | 
12 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
c(c(x0)) | 
→ | 
x0 | 
| 
b(b(x0)) | 
→ | 
B(x0) | 
| 
B(B(x0)) | 
→ | 
b(x0) | 
| 
c(B(c(b(c(x0))))) | 
→ | 
B(c(b(c(B(c(b(x0))))))) | 
| 
b(B(x0)) | 
→ | 
x0 | 
| 
B(b(x0)) | 
→ | 
x0 | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [B(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
b(b(x0)) | 
→ | 
B(x0) | 
| 
B(B(x0)) | 
→ | 
b(x0) | 
| 
c(B(c(b(c(x0))))) | 
→ | 
B(c(b(c(B(c(b(x0))))))) | 
| 
b(B(x0)) | 
→ | 
x0 | 
| 
B(b(x0)) | 
→ | 
x0 | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(b(x0)) | 
→ | 
B(x0) | 
| 
B(B(x0)) | 
→ | 
b(x0) | 
| 
c(b(c(B(c(x0))))) | 
→ | 
b(c(B(c(b(c(B(x0))))))) | 
| 
B(b(x0)) | 
→ | 
x0 | 
| 
b(B(x0)) | 
→ | 
x0 | 
1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 1.
        This is shown by the following automaton.
        
- 
final states:
{2, 4, 3, 1}
 
- 
transitions:
| 3 | 
 →  | 
1 | 
| 9 | 
 →  | 
8 | 
| 9 | 
 →  | 
10 | 
| 1 | 
 →  | 
3 | 
| 2 | 
 →  | 
1 | 
| 11 | 
 →  | 
6 | 
| 4 | 
 →  | 
7 | 
| 4 | 
 →  | 
5 | 
| 
B1(10) | 
 →  | 
11 | 
| 
f40
 | 
 →  | 
2 | 
| 
b0(9) | 
 →  | 
4 | 
| 
b0(5) | 
 →  | 
6 | 
| 
b0(2) | 
 →  | 
3 | 
| 
c0(8) | 
 →  | 
9 | 
| 
c0(6) | 
 →  | 
7 | 
| 
c0(1) | 
 →  | 
5 | 
| 
B0(2) | 
 →  | 
1 | 
| 
B0(7) | 
 →  | 
8 |