YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
R(x0) | 
→ | 
r(x0) | 
| 
r(p(x0)) | 
→ | 
p(p(r(P(x0)))) | 
| 
r(r(x0)) | 
→ | 
x0 | 
| 
r(P(P(x0))) | 
→ | 
P(P(r(x0))) | 
| 
p(P(x0)) | 
→ | 
x0 | 
| 
P(p(x0)) | 
→ | 
x0 | 
| 
r(R(x0)) | 
→ | 
x0 | 
| 
R(r(x0)) | 
→ | 
x0 | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [r(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [P(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [R(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [p(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
R(x0) | 
→ | 
r(x0) | 
| 
r(p(x0)) | 
→ | 
p(p(r(P(x0)))) | 
| 
r(P(P(x0))) | 
→ | 
P(P(r(x0))) | 
| 
p(P(x0)) | 
→ | 
x0 | 
| 
P(p(x0)) | 
→ | 
x0 | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [r(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [P(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [R(x1)] | 
 =  | 
10 · 
                    x1 + 
                -∞
             | 
| [p(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
r(p(x0)) | 
→ | 
p(p(r(P(x0)))) | 
| 
r(P(P(x0))) | 
→ | 
P(P(r(x0))) | 
| 
p(P(x0)) | 
→ | 
x0 | 
| 
P(p(x0)) | 
→ | 
x0 | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
p(r(x0)) | 
→ | 
P(r(p(p(x0)))) | 
| 
P(P(r(x0))) | 
→ | 
r(P(P(x0))) | 
| 
P(p(x0)) | 
→ | 
x0 | 
| 
p(P(x0)) | 
→ | 
x0 | 
1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 0.
        This is shown by the following automaton.
        
- 
final states:
{2, 6, 1}
 
- 
transitions:
| 5 | 
 →  | 
4 | 
| 1 | 
 →  | 
3 | 
| 1 | 
 →  | 
4 | 
| 6 | 
 →  | 
8 | 
| 6 | 
 →  | 
7 | 
| 2 | 
 →  | 
7 | 
| 2 | 
 →  | 
3 | 
| 2 | 
 →  | 
8 | 
| 2 | 
 →  | 
4 | 
| 
f40
 | 
 →  | 
2 | 
| 
r0(8) | 
 →  | 
6 | 
| 
r0(4) | 
 →  | 
5 | 
| 
p0(2) | 
 →  | 
3 | 
| 
p0(3) | 
 →  | 
4 | 
| 
P0(5) | 
 →  | 
1 | 
| 
P0(2) | 
 →  | 
7 | 
| 
P0(7) | 
 →  | 
8 |