YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
r(r(x0)) | 
→ | 
s(r(x0)) | 
| 
r(s(x0)) | 
→ | 
s(r(x0)) | 
| 
r(n(x0)) | 
→ | 
s(r(x0)) | 
| 
r(b(x0)) | 
→ | 
u(s(b(x0))) | 
| 
r(u(x0)) | 
→ | 
u(r(x0)) | 
| 
s(u(x0)) | 
→ | 
u(s(x0)) | 
| 
n(u(x0)) | 
→ | 
u(n(x0)) | 
| 
t(r(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
t(s(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
t(n(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
c(u(x0)) | 
→ | 
u(c(x0)) | 
| 
c(s(x0)) | 
→ | 
s(c(x0)) | 
| 
c(r(x0)) | 
→ | 
r(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(x0) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [u(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [s(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [t(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [r(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [n(x1)] | 
 =  | 
9 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
r(r(x0)) | 
→ | 
s(r(x0)) | 
| 
r(s(x0)) | 
→ | 
s(r(x0)) | 
| 
r(b(x0)) | 
→ | 
u(s(b(x0))) | 
| 
r(u(x0)) | 
→ | 
u(r(x0)) | 
| 
s(u(x0)) | 
→ | 
u(s(x0)) | 
| 
n(u(x0)) | 
→ | 
u(n(x0)) | 
| 
t(r(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
t(s(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
c(u(x0)) | 
→ | 
u(c(x0)) | 
| 
c(s(x0)) | 
→ | 
s(c(x0)) | 
| 
c(r(x0)) | 
→ | 
r(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(x0) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [u(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [s(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [t(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [r(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [n(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
r(s(x0)) | 
→ | 
s(r(x0)) | 
| 
r(b(x0)) | 
→ | 
u(s(b(x0))) | 
| 
r(u(x0)) | 
→ | 
u(r(x0)) | 
| 
s(u(x0)) | 
→ | 
u(s(x0)) | 
| 
n(u(x0)) | 
→ | 
u(n(x0)) | 
| 
t(s(u(x0))) | 
→ | 
t(c(r(x0))) | 
| 
c(u(x0)) | 
→ | 
u(c(x0)) | 
| 
c(s(x0)) | 
→ | 
s(c(x0)) | 
| 
c(r(x0)) | 
→ | 
r(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(c(x0)) | 
| 
c(n(x0)) | 
→ | 
n(x0) | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
s(r(x0)) | 
→ | 
r(s(x0)) | 
| 
b(r(x0)) | 
→ | 
b(s(u(x0))) | 
| 
u(r(x0)) | 
→ | 
r(u(x0)) | 
| 
u(s(x0)) | 
→ | 
s(u(x0)) | 
| 
u(n(x0)) | 
→ | 
n(u(x0)) | 
| 
u(s(t(x0))) | 
→ | 
r(c(t(x0))) | 
| 
u(c(x0)) | 
→ | 
c(u(x0)) | 
| 
s(c(x0)) | 
→ | 
c(s(x0)) | 
| 
r(c(x0)) | 
→ | 
c(r(x0)) | 
| 
n(c(x0)) | 
→ | 
c(n(x0)) | 
| 
n(c(x0)) | 
→ | 
n(x0) | 
1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the naturals
| [u(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [s(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [t(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [r(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [n(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
s(r(x0)) | 
→ | 
r(s(x0)) | 
| 
u(r(x0)) | 
→ | 
r(u(x0)) | 
| 
u(s(x0)) | 
→ | 
s(u(x0)) | 
| 
u(n(x0)) | 
→ | 
n(u(x0)) | 
| 
u(s(t(x0))) | 
→ | 
r(c(t(x0))) | 
| 
u(c(x0)) | 
→ | 
c(u(x0)) | 
| 
s(c(x0)) | 
→ | 
c(s(x0)) | 
| 
r(c(x0)) | 
→ | 
c(r(x0)) | 
| 
n(c(x0)) | 
→ | 
c(n(x0)) | 
| 
n(c(x0)) | 
→ | 
n(x0) | 
          remain.
        1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [u(x1)] | 
 =  | 
14 · 
                    x1 + 
                -∞
             | 
| [s(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [t(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [r(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
14 · 
                    x1 + 
                -∞
             | 
| [n(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
s(r(x0)) | 
→ | 
r(s(x0)) | 
| 
u(r(x0)) | 
→ | 
r(u(x0)) | 
| 
u(s(x0)) | 
→ | 
s(u(x0)) | 
| 
u(n(x0)) | 
→ | 
n(u(x0)) | 
| 
u(s(t(x0))) | 
→ | 
r(c(t(x0))) | 
| 
u(c(x0)) | 
→ | 
c(u(x0)) | 
| 
s(c(x0)) | 
→ | 
c(s(x0)) | 
| 
r(c(x0)) | 
→ | 
c(r(x0)) | 
| 
n(c(x0)) | 
→ | 
c(n(x0)) | 
          remain.
        1.1.1.1.1.1 Rule Removal
      Using the
      Knuth Bendix order with w0 = 1 and the following precedence and weight function
| prec(c) | 
= | 
0 | 
 | 
weight(c) | 
= | 
1 | 
 | 
 | 
 | 
| prec(t) | 
= | 
0 | 
 | 
weight(t) | 
= | 
1 | 
 | 
 | 
 | 
| prec(u) | 
= | 
3 | 
 | 
weight(u) | 
= | 
1 | 
 | 
 | 
 | 
| prec(n) | 
= | 
2 | 
 | 
weight(n) | 
= | 
1 | 
 | 
 | 
 | 
| prec(s) | 
= | 
2 | 
 | 
weight(s) | 
= | 
1 | 
 | 
 | 
 | 
| prec(r) | 
= | 
1 | 
 | 
weight(r) | 
= | 
1 | 
 | 
 | 
 | 
          all rules could be removed.
        1.1.1.1.1.1.1 R is empty 
There are no rules in the TRS. Hence, it is terminating.