YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
b(d(b(x0))) | 
→ | 
c(d(b(x0))) | 
| 
b(a(c(x0))) | 
→ | 
b(c(x0)) | 
| 
a(d(x0)) | 
→ | 
d(c(x0)) | 
| 
b(b(b(x0))) | 
→ | 
a(b(c(x0))) | 
| 
d(c(x0)) | 
→ | 
b(d(x0)) | 
| 
d(c(x0)) | 
→ | 
d(b(d(x0))) | 
| 
d(a(c(x0))) | 
→ | 
b(b(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [d(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
b(d(b(x0))) | 
→ | 
c(d(b(x0))) | 
| 
a(d(x0)) | 
→ | 
d(c(x0)) | 
| 
b(b(b(x0))) | 
→ | 
a(b(c(x0))) | 
| 
d(c(x0)) | 
→ | 
b(d(x0)) | 
| 
d(c(x0)) | 
→ | 
d(b(d(x0))) | 
| 
d(a(c(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(d(b(x0))) | 
→ | 
b(d(c(x0))) | 
| 
d(a(x0)) | 
→ | 
c(d(x0)) | 
| 
b(b(b(x0))) | 
→ | 
c(b(a(x0))) | 
| 
c(d(x0)) | 
→ | 
d(b(x0)) | 
| 
c(d(x0)) | 
→ | 
d(b(d(x0))) | 
| 
c(a(d(x0))) | 
→ | 
b(b(x0)) | 
1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over (2 x 2)-matrices with strict dimension 1 
            over the naturals
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
          the
          rules
| 
b(d(b(x0))) | 
→ | 
b(d(c(x0))) | 
| 
b(b(b(x0))) | 
→ | 
c(b(a(x0))) | 
| 
c(d(x0)) | 
→ | 
d(b(x0)) | 
| 
c(d(x0)) | 
→ | 
d(b(d(x0))) | 
| 
c(a(d(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 1.
        This is shown by the following automaton.
        
- 
final states:
{13, 10, 8, 5, 1}
 
- 
transitions:
| 10 | 
 →  | 
3 | 
| 9 | 
 →  | 
14 | 
| 5 | 
 →  | 
13 | 
| 5 | 
 →  | 
9 | 
| 1 | 
 →  | 
12 | 
| 1 | 
 →  | 
9 | 
| 8 | 
 →  | 
3 | 
| 13 | 
 →  | 
3 | 
| 17 | 
 →  | 
9 | 
| 17 | 
 →  | 
12 | 
| 17 | 
 →  | 
1 | 
| 
d0(9) | 
 →  | 
8 | 
| 
d0(3) | 
 →  | 
4 | 
| 
d0(2) | 
 →  | 
11 | 
| 
d0(12) | 
 →  | 
10 | 
| 
f40
 | 
 →  | 
2 | 
| 
a0(2) | 
 →  | 
6 | 
| 
b1(16) | 
 →  | 
17 | 
| 
d1(15) | 
 →  | 
16 | 
| 
c0(2) | 
 →  | 
3 | 
| 
c0(7) | 
 →  | 
5 | 
| 
c1(14) | 
 →  | 
15 | 
| 
b0(6) | 
 →  | 
7 | 
| 
b0(2) | 
 →  | 
9 | 
| 
b0(9) | 
 →  | 
13 | 
| 
b0(11) | 
 →  | 
12 | 
| 
b0(4) | 
 →  | 
1 |