YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
q0(0(x0)) | 
→ | 
0'(q1(x0)) | 
| 
q1(0(x0)) | 
→ | 
0(q1(x0)) | 
| 
q1(1'(x0)) | 
→ | 
1'(q1(x0)) | 
| 
0(q1(1(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q1(1(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q1(1(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
0(q2(0(x0))) | 
→ | 
q2(0(0(x0))) | 
| 
0'(q2(0(x0))) | 
→ | 
q2(0'(0(x0))) | 
| 
1'(q2(0(x0))) | 
→ | 
q2(1'(0(x0))) | 
| 
0(q2(1'(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q2(1'(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q2(1'(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
q2(0'(x0)) | 
→ | 
0'(q0(x0)) | 
| 
q0(1'(x0)) | 
→ | 
1'(q3(x0)) | 
| 
q3(1'(x0)) | 
→ | 
1'(q3(x0)) | 
| 
q3(b(x0)) | 
→ | 
b(q4(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [1'(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [q0(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [0'(x1)] | 
 =  | 
9 · 
                    x1 + 
                -∞
             | 
| [1(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [0(x1)] | 
 =  | 
7 · 
                    x1 + 
                -∞
             | 
| [q3(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [q4(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [q2(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [q1(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
q0(0(x0)) | 
→ | 
0'(q1(x0)) | 
| 
q1(0(x0)) | 
→ | 
0(q1(x0)) | 
| 
q1(1'(x0)) | 
→ | 
1'(q1(x0)) | 
| 
0(q1(1(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q1(1(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q1(1(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
0(q2(0(x0))) | 
→ | 
q2(0(0(x0))) | 
| 
0'(q2(0(x0))) | 
→ | 
q2(0'(0(x0))) | 
| 
1'(q2(0(x0))) | 
→ | 
q2(1'(0(x0))) | 
| 
0(q2(1'(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q2(1'(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q2(1'(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
q2(0'(x0)) | 
→ | 
0'(q0(x0)) | 
| 
q0(1'(x0)) | 
→ | 
1'(q3(x0)) | 
| 
q3(1'(x0)) | 
→ | 
1'(q3(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [1'(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [q0(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [0'(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [1(x1)] | 
 =  | 
7 · 
                    x1 + 
                -∞
             | 
| [0(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [q3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [q2(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [q1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
q0(0(x0)) | 
→ | 
0'(q1(x0)) | 
| 
q1(0(x0)) | 
→ | 
0(q1(x0)) | 
| 
q1(1'(x0)) | 
→ | 
1'(q1(x0)) | 
| 
0(q1(1(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q1(1(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q1(1(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
0(q2(0(x0))) | 
→ | 
q2(0(0(x0))) | 
| 
0'(q2(0(x0))) | 
→ | 
q2(0'(0(x0))) | 
| 
1'(q2(0(x0))) | 
→ | 
q2(1'(0(x0))) | 
| 
0(q2(1'(x0))) | 
→ | 
q2(0(1'(x0))) | 
| 
0'(q2(1'(x0))) | 
→ | 
q2(0'(1'(x0))) | 
| 
1'(q2(1'(x0))) | 
→ | 
q2(1'(1'(x0))) | 
| 
q0(1'(x0)) | 
→ | 
1'(q3(x0)) | 
| 
q3(1'(x0)) | 
→ | 
1'(q3(x0)) | 
          remain.
        1.1.1 Rule Removal
      Using the
      Knuth Bendix order with w0 = 1 and the following precedence and weight function
| prec(q3) | 
= | 
4 | 
 | 
weight(q3) | 
= | 
1 | 
 | 
 | 
 | 
| prec(q2) | 
= | 
0 | 
 | 
weight(q2) | 
= | 
1 | 
 | 
 | 
 | 
| prec(1) | 
= | 
0 | 
 | 
weight(1) | 
= | 
1 | 
 | 
 | 
 | 
| prec(1') | 
= | 
1 | 
 | 
weight(1') | 
= | 
1 | 
 | 
 | 
 | 
| prec(0') | 
= | 
2 | 
 | 
weight(0') | 
= | 
1 | 
 | 
 | 
 | 
| prec(q1) | 
= | 
2 | 
 | 
weight(q1) | 
= | 
1 | 
 | 
 | 
 | 
| prec(q0) | 
= | 
7 | 
 | 
weight(q0) | 
= | 
1 | 
 | 
 | 
 | 
| prec(0) | 
= | 
1 | 
 | 
weight(0) | 
= | 
1 | 
 | 
 | 
 | 
          all rules could be removed.
        1.1.1.1 R is empty 
There are no rules in the TRS. Hence, it is terminating.