YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
B(x0) | 
→ | 
W(M(M(M(M(V(x0)))))) | 
| 
M(x0) | 
→ | 
x0 | 
| 
M(V(a(x0))) | 
→ | 
V(Xa(x0)) | 
| 
M(V(b(x0))) | 
→ | 
V(Xb(x0)) | 
| 
Xa(a(x0)) | 
→ | 
a(Xa(x0)) | 
| 
Xa(b(x0)) | 
→ | 
b(Xa(x0)) | 
| 
Xb(a(x0)) | 
→ | 
a(Xb(x0)) | 
| 
Xb(b(x0)) | 
→ | 
b(Xb(x0)) | 
| 
Xa(E(x0)) | 
→ | 
a(E(x0)) | 
| 
Xb(E(x0)) | 
→ | 
b(E(x0)) | 
| 
W(V(x0)) | 
→ | 
R(L(x0)) | 
| 
L(a(x0)) | 
→ | 
Ya(L(x0)) | 
| 
L(b(x0)) | 
→ | 
Yb(L(x0)) | 
| 
L(a(a(x0))) | 
→ | 
D(b(b(b(x0)))) | 
| 
L(b(b(b(b(b(x0)))))) | 
→ | 
D(a(a(a(x0)))) | 
| 
Ya(D(x0)) | 
→ | 
D(a(x0)) | 
| 
Yb(D(x0)) | 
→ | 
D(b(x0)) | 
| 
R(D(x0)) | 
→ | 
B(x0) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [E(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [V(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [W(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Xa(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [R(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [B(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Xb(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Yb(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Ya(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [L(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [D(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [M(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
B(x0) | 
→ | 
W(M(M(M(M(V(x0)))))) | 
| 
M(x0) | 
→ | 
x0 | 
| 
M(V(a(x0))) | 
→ | 
V(Xa(x0)) | 
| 
M(V(b(x0))) | 
→ | 
V(Xb(x0)) | 
| 
Xa(a(x0)) | 
→ | 
a(Xa(x0)) | 
| 
Xa(b(x0)) | 
→ | 
b(Xa(x0)) | 
| 
Xb(a(x0)) | 
→ | 
a(Xb(x0)) | 
| 
Xb(b(x0)) | 
→ | 
b(Xb(x0)) | 
| 
Xa(E(x0)) | 
→ | 
a(E(x0)) | 
| 
Xb(E(x0)) | 
→ | 
b(E(x0)) | 
| 
W(V(x0)) | 
→ | 
R(L(x0)) | 
| 
L(a(x0)) | 
→ | 
Ya(L(x0)) | 
| 
L(b(x0)) | 
→ | 
Yb(L(x0)) | 
| 
L(b(b(b(b(b(x0)))))) | 
→ | 
D(a(a(a(x0)))) | 
| 
Ya(D(x0)) | 
→ | 
D(a(x0)) | 
| 
Yb(D(x0)) | 
→ | 
D(b(x0)) | 
| 
R(D(x0)) | 
→ | 
B(x0) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [E(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [V(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [W(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Xa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [R(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [B(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Xb(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Yb(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Ya(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [L(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [D(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [M(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
M(x0) | 
→ | 
x0 | 
| 
M(V(a(x0))) | 
→ | 
V(Xa(x0)) | 
| 
M(V(b(x0))) | 
→ | 
V(Xb(x0)) | 
| 
Xa(a(x0)) | 
→ | 
a(Xa(x0)) | 
| 
Xa(b(x0)) | 
→ | 
b(Xa(x0)) | 
| 
Xb(a(x0)) | 
→ | 
a(Xb(x0)) | 
| 
Xb(b(x0)) | 
→ | 
b(Xb(x0)) | 
| 
Xa(E(x0)) | 
→ | 
a(E(x0)) | 
| 
Xb(E(x0)) | 
→ | 
b(E(x0)) | 
| 
W(V(x0)) | 
→ | 
R(L(x0)) | 
| 
L(a(x0)) | 
→ | 
Ya(L(x0)) | 
| 
L(b(x0)) | 
→ | 
Yb(L(x0)) | 
| 
Ya(D(x0)) | 
→ | 
D(a(x0)) | 
| 
Yb(D(x0)) | 
→ | 
D(b(x0)) | 
| 
R(D(x0)) | 
→ | 
B(x0) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [E(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [V(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [W(x1)] | 
 =  | 
11 · 
                    x1 + 
                -∞
             | 
| [Xa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [R(x1)] | 
 =  | 
11 · 
                    x1 + 
                -∞
             | 
| [B(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Xb(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Yb(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ya(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [L(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [D(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [M(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
M(x0) | 
→ | 
x0 | 
| 
M(V(a(x0))) | 
→ | 
V(Xa(x0)) | 
| 
M(V(b(x0))) | 
→ | 
V(Xb(x0)) | 
| 
Xa(a(x0)) | 
→ | 
a(Xa(x0)) | 
| 
Xa(b(x0)) | 
→ | 
b(Xa(x0)) | 
| 
Xb(a(x0)) | 
→ | 
a(Xb(x0)) | 
| 
Xb(b(x0)) | 
→ | 
b(Xb(x0)) | 
| 
Xa(E(x0)) | 
→ | 
a(E(x0)) | 
| 
Xb(E(x0)) | 
→ | 
b(E(x0)) | 
| 
W(V(x0)) | 
→ | 
R(L(x0)) | 
| 
L(a(x0)) | 
→ | 
Ya(L(x0)) | 
| 
L(b(x0)) | 
→ | 
Yb(L(x0)) | 
| 
Ya(D(x0)) | 
→ | 
D(a(x0)) | 
| 
Yb(D(x0)) | 
→ | 
D(b(x0)) | 
          remain.
        1.1.1.1 Rule Removal
      Using the
      Knuth Bendix order with w0 = 1 and the following precedence and weight function
| prec(D) | 
= | 
0 | 
 | 
weight(D) | 
= | 
1 | 
 | 
 | 
 | 
| prec(Yb) | 
= | 
1 | 
 | 
weight(Yb) | 
= | 
1 | 
 | 
 | 
 | 
| prec(Ya) | 
= | 
1 | 
 | 
weight(Ya) | 
= | 
1 | 
 | 
 | 
 | 
| prec(R) | 
= | 
4 | 
 | 
weight(R) | 
= | 
0 | 
 | 
 | 
 | 
| prec(L) | 
= | 
2 | 
 | 
weight(L) | 
= | 
1 | 
 | 
 | 
 | 
| prec(E) | 
= | 
0 | 
 | 
weight(E) | 
= | 
1 | 
 | 
 | 
 | 
| prec(Xb) | 
= | 
2 | 
 | 
weight(Xb) | 
= | 
1 | 
 | 
 | 
 | 
| prec(b) | 
= | 
0 | 
 | 
weight(b) | 
= | 
1 | 
 | 
 | 
 | 
| prec(Xa) | 
= | 
2 | 
 | 
weight(Xa) | 
= | 
1 | 
 | 
 | 
 | 
| prec(a) | 
= | 
0 | 
 | 
weight(a) | 
= | 
1 | 
 | 
 | 
 | 
| prec(W) | 
= | 
0 | 
 | 
weight(W) | 
= | 
1 | 
 | 
 | 
 | 
| prec(M) | 
= | 
0 | 
 | 
weight(M) | 
= | 
1 | 
 | 
 | 
 | 
| prec(V) | 
= | 
0 | 
 | 
weight(V) | 
= | 
1 | 
 | 
 | 
 | 
          all rules could be removed.
        1.1.1.1.1 R is empty 
There are no rules in the TRS. Hence, it is terminating.