YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(a(x0))) | → | D(b(b(b(x0)))) | 
| L(b(b(x0))) | → | D(c(c(c(x0)))) | 
| L(c(c(c(c(x0))))) | → | D(a(b(x0))) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [a(x1)] | = | 9 · x1 + -∞ | 
| [Yc(x1)] | = | 4 · x1 + -∞ | 
| [c(x1)] | = | 4 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 8 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Xa(x1)] | = | 9 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [B(x1)] | = | 8 · x1 + -∞ | 
| [Xb(x1)] | = | 6 · x1 + -∞ | 
| [Yb(x1)] | = | 6 · x1 + -∞ | 
| [R(x1)] | = | 8 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [Xc(x1)] | = | 4 · x1 + -∞ | 
| [Ya(x1)] | = | 9 · x1 + -∞ | 
| [b(x1)] | = | 6 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(a(x0))) | → | D(b(b(b(x0)))) | 
| L(b(b(x0))) | → | D(c(c(c(x0)))) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [a(x1)] | = | 2 · x1 + -∞ | 
| [Yc(x1)] | = | 0 · x1 + -∞ | 
| [c(x1)] | = | 0 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 0 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Xa(x1)] | = | 2 · x1 + -∞ | 
| [E(x1)] | = | 2 · x1 + -∞ | 
| [B(x1)] | = | 0 · x1 + -∞ | 
| [Xb(x1)] | = | 0 · x1 + -∞ | 
| [Yb(x1)] | = | 0 · x1 + -∞ | 
| [R(x1)] | = | 0 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [Xc(x1)] | = | 0 · x1 + -∞ | 
| [Ya(x1)] | = | 2 · x1 + -∞ | 
| [b(x1)] | = | 0 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(b(b(x0))) | → | D(c(c(c(x0)))) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [a(x1)] | = | 0 · x1 + -∞ | 
| [Yc(x1)] | = | 0 · x1 + -∞ | 
| [c(x1)] | = | 0 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 6 · x1 + -∞ | 
| [D(x1)] | = | 2 · x1 + -∞ | 
| [Xa(x1)] | = | 0 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [B(x1)] | = | 8 · x1 + -∞ | 
| [Xb(x1)] | = | 1 · x1 + -∞ | 
| [Yb(x1)] | = | 1 · x1 + -∞ | 
| [R(x1)] | = | 6 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [Xc(x1)] | = | 0 · x1 + -∞ | 
| [Ya(x1)] | = | 0 · x1 + -∞ | 
| [b(x1)] | = | 1 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| M(x0) | → | x0 | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(b(b(x0))) | → | D(c(c(c(x0)))) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| R(D(x0)) | → | B(x0) | 
final states:
{35, 34, 32, 30, 26, 25, 24, 23, 21, 20, 19, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 6, 4, 2, 1}
transitions:
| 23 | → | 22 | 
| 25 | → | 22 | 
| 29 | → | 36 | 
| 29 | → | 42 | 
| 29 | → | 46 | 
| 29 | → | 50 | 
| 10 | → | 3 | 
| 51 | → | 21 | 
| 15 | → | 7 | 
| 57 | → | 37 | 
| 9 | → | 3 | 
| 37 | → | 56 | 
| 37 | → | 58 | 
| 37 | → | 64 | 
| 37 | → | 66 | 
| 59 | → | 37 | 
| 65 | → | 37 | 
| 20 | → | 7 | 
| 8 | → | 3 | 
| 13 | → | 5 | 
| 26 | → | 22 | 
| 38 | → | 22 | 
| 38 | → | 23 | 
| 38 | → | 24 | 
| 38 | → | 25 | 
| 67 | → | 21 | 
| 11 | → | 5 | 
| 16 | → | 7 | 
| 14 | → | 7 | 
| 12 | → | 5 | 
| 17 | → | 3 | 
| 47 | → | 37 | 
| 24 | → | 22 | 
| 19 | → | 5 | 
| 43 | → | 37 | 
| Xc0(1) | → | 7 | 
| D0(31) | → | 30 | 
| D0(29) | → | 26 | 
| D0(27) | → | 34 | 
| D0(33) | → | 32 | 
| f170 | → | 1 | 
| V0(7) | → | 6 | 
| V0(5) | → | 4 | 
| V0(3) | → | 2 | 
| L0(1) | → | 22 | 
| c0(27) | → | 28 | 
| c0(5) | → | 13 | 
| c0(28) | → | 29 | 
| c0(3) | → | 10 | 
| c0(7) | → | 16 | 
| c0(18) | → | 20 | 
| c0(1) | → | 27 | 
| a0(5) | → | 11 | 
| a0(7) | → | 14 | 
| a0(18) | → | 17 | 
| a0(1) | → | 31 | 
| a0(3) | → | 8 | 
| Yb0(22) | → | 24 | 
| b0(3) | → | 9 | 
| b0(5) | → | 12 | 
| b0(18) | → | 19 | 
| b0(1) | → | 33 | 
| b0(7) | → | 15 | 
| B0(1) | → | 35 | 
| Xb0(1) | → | 5 | 
| b1(42) | → | 43 | 
| b1(58) | → | 59 | 
| c1(64) | → | 65 | 
| c1(46) | → | 47 | 
| R0(22) | → | 21 | 
| E0(1) | → | 18 | 
| a1(56) | → | 57 | 
| a1(36) | → | 37 | 
| Yc0(22) | → | 25 | 
| B1(50) | → | 51 | 
| B1(66) | → | 67 | 
| D1(37) | → | 38 | 
| Ya0(22) | → | 23 | 
| Xa0(1) | → | 3 |