YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| Begin(a(x0)) | → | Wait(Right1(x0)) |
| Begin(b(x0)) | → | Wait(Right2(x0)) |
| Begin(c(c(c(x0)))) | → | Wait(Right3(x0)) |
| Begin(c(c(x0))) | → | Wait(Right4(x0)) |
| Begin(c(x0)) | → | Wait(Right5(x0)) |
| Right1(a(End(x0))) | → | Left(b(b(b(End(x0))))) |
| Right2(b(End(x0))) | → | Left(c(c(c(End(x0))))) |
| Right3(c(End(x0))) | → | Left(a(b(End(x0)))) |
| Right4(c(c(End(x0)))) | → | Left(a(b(End(x0)))) |
| Right5(c(c(c(End(x0))))) | → | Left(a(b(End(x0)))) |
| Right1(a(x0)) | → | Aa(Right1(x0)) |
| Right2(a(x0)) | → | Aa(Right2(x0)) |
| Right3(a(x0)) | → | Aa(Right3(x0)) |
| Right4(a(x0)) | → | Aa(Right4(x0)) |
| Right5(a(x0)) | → | Aa(Right5(x0)) |
| Right1(b(x0)) | → | Ab(Right1(x0)) |
| Right2(b(x0)) | → | Ab(Right2(x0)) |
| Right3(b(x0)) | → | Ab(Right3(x0)) |
| Right4(b(x0)) | → | Ab(Right4(x0)) |
| Right5(b(x0)) | → | Ab(Right5(x0)) |
| Right1(c(x0)) | → | Ac(Right1(x0)) |
| Right2(c(x0)) | → | Ac(Right2(x0)) |
| Right3(c(x0)) | → | Ac(Right3(x0)) |
| Right4(c(x0)) | → | Ac(Right4(x0)) |
| Right5(c(x0)) | → | Ac(Right5(x0)) |
| Aa(Left(x0)) | → | Left(a(x0)) |
| Ab(Left(x0)) | → | Left(b(x0)) |
| Ac(Left(x0)) | → | Left(c(x0)) |
| Wait(Left(x0)) | → | Begin(x0) |
| a(a(x0)) | → | b(b(b(x0))) |
| b(b(x0)) | → | c(c(c(x0))) |
| c(c(c(c(x0)))) | → | a(b(x0)) |
| [b(x1)] | = | 3 · x1 + -∞ |
| [Right4(x1)] | = | 4 · x1 + -∞ |
| [Begin(x1)] | = | 0 · x1 + -∞ |
| [Wait(x1)] | = | 0 · x1 + -∞ |
| [Right2(x1)] | = | 3 · x1 + -∞ |
| [End(x1)] | = | 4 · x1 + -∞ |
| [a(x1)] | = | 5 · x1 + -∞ |
| [Right3(x1)] | = | 6 · x1 + -∞ |
| [Ac(x1)] | = | 2 · x1 + -∞ |
| [Aa(x1)] | = | 5 · x1 + -∞ |
| [Left(x1)] | = | 0 · x1 + -∞ |
| [Right5(x1)] | = | 2 · x1 + -∞ |
| [Ab(x1)] | = | 3 · x1 + -∞ |
| [c(x1)] | = | 2 · x1 + -∞ |
| [Right1(x1)] | = | 4 · x1 + -∞ |
| Begin(b(x0)) | → | Wait(Right2(x0)) |
| Begin(c(c(c(x0)))) | → | Wait(Right3(x0)) |
| Begin(c(c(x0))) | → | Wait(Right4(x0)) |
| Begin(c(x0)) | → | Wait(Right5(x0)) |
| Right1(a(End(x0))) | → | Left(b(b(b(End(x0))))) |
| Right2(b(End(x0))) | → | Left(c(c(c(End(x0))))) |
| Right3(c(End(x0))) | → | Left(a(b(End(x0)))) |
| Right4(c(c(End(x0)))) | → | Left(a(b(End(x0)))) |
| Right5(c(c(c(End(x0))))) | → | Left(a(b(End(x0)))) |
| Right1(a(x0)) | → | Aa(Right1(x0)) |
| Right2(a(x0)) | → | Aa(Right2(x0)) |
| Right3(a(x0)) | → | Aa(Right3(x0)) |
| Right4(a(x0)) | → | Aa(Right4(x0)) |
| Right5(a(x0)) | → | Aa(Right5(x0)) |
| Right1(b(x0)) | → | Ab(Right1(x0)) |
| Right2(b(x0)) | → | Ab(Right2(x0)) |
| Right3(b(x0)) | → | Ab(Right3(x0)) |
| Right4(b(x0)) | → | Ab(Right4(x0)) |
| Right5(b(x0)) | → | Ab(Right5(x0)) |
| Right1(c(x0)) | → | Ac(Right1(x0)) |
| Right2(c(x0)) | → | Ac(Right2(x0)) |
| Right3(c(x0)) | → | Ac(Right3(x0)) |
| Right4(c(x0)) | → | Ac(Right4(x0)) |
| Right5(c(x0)) | → | Ac(Right5(x0)) |
| Aa(Left(x0)) | → | Left(a(x0)) |
| Ab(Left(x0)) | → | Left(b(x0)) |
| Ac(Left(x0)) | → | Left(c(x0)) |
| Wait(Left(x0)) | → | Begin(x0) |
| b(b(x0)) | → | c(c(c(x0))) |
| c(c(c(c(x0)))) | → | a(b(x0)) |
| [b(x1)] | = | 0 · x1 + -∞ |
| [Right4(x1)] | = | 0 · x1 + -∞ |
| [Begin(x1)] | = | 0 · x1 + -∞ |
| [Wait(x1)] | = | 0 · x1 + -∞ |
| [Right2(x1)] | = | 0 · x1 + -∞ |
| [End(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [Right3(x1)] | = | 0 · x1 + -∞ |
| [Ac(x1)] | = | 0 · x1 + -∞ |
| [Aa(x1)] | = | 0 · x1 + -∞ |
| [Left(x1)] | = | 0 · x1 + -∞ |
| [Right5(x1)] | = | 0 · x1 + -∞ |
| [Ab(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 0 · x1 + -∞ |
| [Right1(x1)] | = | 6 · x1 + -∞ |
| Begin(b(x0)) | → | Wait(Right2(x0)) |
| Begin(c(c(c(x0)))) | → | Wait(Right3(x0)) |
| Begin(c(c(x0))) | → | Wait(Right4(x0)) |
| Begin(c(x0)) | → | Wait(Right5(x0)) |
| Right2(b(End(x0))) | → | Left(c(c(c(End(x0))))) |
| Right3(c(End(x0))) | → | Left(a(b(End(x0)))) |
| Right4(c(c(End(x0)))) | → | Left(a(b(End(x0)))) |
| Right5(c(c(c(End(x0))))) | → | Left(a(b(End(x0)))) |
| Right1(a(x0)) | → | Aa(Right1(x0)) |
| Right2(a(x0)) | → | Aa(Right2(x0)) |
| Right3(a(x0)) | → | Aa(Right3(x0)) |
| Right4(a(x0)) | → | Aa(Right4(x0)) |
| Right5(a(x0)) | → | Aa(Right5(x0)) |
| Right1(b(x0)) | → | Ab(Right1(x0)) |
| Right2(b(x0)) | → | Ab(Right2(x0)) |
| Right3(b(x0)) | → | Ab(Right3(x0)) |
| Right4(b(x0)) | → | Ab(Right4(x0)) |
| Right5(b(x0)) | → | Ab(Right5(x0)) |
| Right1(c(x0)) | → | Ac(Right1(x0)) |
| Right2(c(x0)) | → | Ac(Right2(x0)) |
| Right3(c(x0)) | → | Ac(Right3(x0)) |
| Right4(c(x0)) | → | Ac(Right4(x0)) |
| Right5(c(x0)) | → | Ac(Right5(x0)) |
| Aa(Left(x0)) | → | Left(a(x0)) |
| Ab(Left(x0)) | → | Left(b(x0)) |
| Ac(Left(x0)) | → | Left(c(x0)) |
| Wait(Left(x0)) | → | Begin(x0) |
| b(b(x0)) | → | c(c(c(x0))) |
| c(c(c(c(x0)))) | → | a(b(x0)) |
| [b(x1)] | = | 5 · x1 + -∞ |
| [Right4(x1)] | = | 1 · x1 + -∞ |
| [Begin(x1)] | = | 0 · x1 + -∞ |
| [Wait(x1)] | = | 0 · x1 + -∞ |
| [Right2(x1)] | = | 1 · x1 + -∞ |
| [End(x1)] | = | 7 · x1 + -∞ |
| [a(x1)] | = | 0 · x1 + -∞ |
| [Right3(x1)] | = | 3 · x1 + -∞ |
| [Ac(x1)] | = | 2 · x1 + -∞ |
| [Aa(x1)] | = | 0 · x1 + -∞ |
| [Left(x1)] | = | 0 · x1 + -∞ |
| [Right5(x1)] | = | 2 · x1 + -∞ |
| [Ab(x1)] | = | 5 · x1 + -∞ |
| [c(x1)] | = | 2 · x1 + -∞ |
| [Right1(x1)] | = | 0 · x1 + -∞ |
| Begin(c(x0)) | → | Wait(Right5(x0)) |
| Right2(b(End(x0))) | → | Left(c(c(c(End(x0))))) |
| Right3(c(End(x0))) | → | Left(a(b(End(x0)))) |
| Right4(c(c(End(x0)))) | → | Left(a(b(End(x0)))) |
| Right1(a(x0)) | → | Aa(Right1(x0)) |
| Right2(a(x0)) | → | Aa(Right2(x0)) |
| Right3(a(x0)) | → | Aa(Right3(x0)) |
| Right4(a(x0)) | → | Aa(Right4(x0)) |
| Right5(a(x0)) | → | Aa(Right5(x0)) |
| Right1(b(x0)) | → | Ab(Right1(x0)) |
| Right2(b(x0)) | → | Ab(Right2(x0)) |
| Right3(b(x0)) | → | Ab(Right3(x0)) |
| Right4(b(x0)) | → | Ab(Right4(x0)) |
| Right5(b(x0)) | → | Ab(Right5(x0)) |
| Right1(c(x0)) | → | Ac(Right1(x0)) |
| Right2(c(x0)) | → | Ac(Right2(x0)) |
| Right3(c(x0)) | → | Ac(Right3(x0)) |
| Right4(c(x0)) | → | Ac(Right4(x0)) |
| Right5(c(x0)) | → | Ac(Right5(x0)) |
| Aa(Left(x0)) | → | Left(a(x0)) |
| Ab(Left(x0)) | → | Left(b(x0)) |
| Ac(Left(x0)) | → | Left(c(x0)) |
| Wait(Left(x0)) | → | Begin(x0) |
| c(Begin(x0)) | → | Right5(Wait(x0)) |
| End(b(Right2(x0))) | → | End(c(c(c(Left(x0))))) |
| End(c(Right3(x0))) | → | End(b(a(Left(x0)))) |
| End(c(c(Right4(x0)))) | → | End(b(a(Left(x0)))) |
| a(Right1(x0)) | → | Right1(Aa(x0)) |
| a(Right2(x0)) | → | Right2(Aa(x0)) |
| a(Right3(x0)) | → | Right3(Aa(x0)) |
| a(Right4(x0)) | → | Right4(Aa(x0)) |
| a(Right5(x0)) | → | Right5(Aa(x0)) |
| b(Right1(x0)) | → | Right1(Ab(x0)) |
| b(Right2(x0)) | → | Right2(Ab(x0)) |
| b(Right3(x0)) | → | Right3(Ab(x0)) |
| b(Right4(x0)) | → | Right4(Ab(x0)) |
| b(Right5(x0)) | → | Right5(Ab(x0)) |
| c(Right1(x0)) | → | Right1(Ac(x0)) |
| c(Right2(x0)) | → | Right2(Ac(x0)) |
| c(Right3(x0)) | → | Right3(Ac(x0)) |
| c(Right4(x0)) | → | Right4(Ac(x0)) |
| c(Right5(x0)) | → | Right5(Ac(x0)) |
| Left(Aa(x0)) | → | a(Left(x0)) |
| Left(Ab(x0)) | → | b(Left(x0)) |
| Left(Ac(x0)) | → | c(Left(x0)) |
| Left(Wait(x0)) | → | Begin(x0) |
final states:
{31, 6, 30, 10, 29, 28, 27, 26, 24, 23, 22, 21, 20, 18, 17, 16, 15, 14, 12, 9, 4, 1}
transitions:
| 10 | → | 5 |
| 41 | → | 36 |
| 37 | → | 5 |
| 37 | → | 6 |
| 37 | → | 10 |
| 37 | → | 30 |
| 37 | → | 7 |
| 37 | → | 11 |
| 37 | → | 8 |
| 31 | → | 5 |
| 49 | → | 36 |
| 36 | → | 40 |
| 36 | → | 44 |
| 36 | → | 48 |
| 6 | → | 5 |
| 2 | → | 35 |
| 45 | → | 36 |
| 30 | → | 5 |
| Ac1(48) | → | 49 |
| a0(5) | → | 10 |
| Ab1(44) | → | 45 |
| b0(10) | → | 11 |
| b0(5) | → | 30 |
| Ac0(2) | → | 25 |
| Right50(13) | → | 17 |
| Right50(3) | → | 1 |
| Right50(25) | → | 29 |
| Right50(19) | → | 23 |
| Right30(25) | → | 27 |
| Right30(19) | → | 21 |
| Right30(13) | → | 15 |
| Begin0(2) | → | 31 |
| End0(8) | → | 4 |
| End0(11) | → | 9 |
| Wait0(2) | → | 3 |
| Aa1(40) | → | 41 |
| Aa0(2) | → | 13 |
| Right51(36) | → | 37 |
| f150 | → | 2 |
| Right10(13) | → | 12 |
| Right10(25) | → | 24 |
| Right10(19) | → | 18 |
| Left0(2) | → | 5 |
| Wait1(35) | → | 36 |
| Right40(13) | → | 16 |
| Right40(19) | → | 22 |
| Right40(25) | → | 28 |
| c0(7) | → | 8 |
| c0(6) | → | 7 |
| c0(5) | → | 6 |
| Right20(19) | → | 20 |
| Right20(25) | → | 26 |
| Right20(13) | → | 14 |
| Ab0(2) | → | 19 |