YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(d(x0))) | → | V(Xd(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(c(c(a(x0))))) | → | D(d(d(x0))) | 
| L(d(b(x0))) | → | D(c(c(x0))) | 
| L(c(x0)) | → | D(a(a(a(a(x0))))) | 
| L(d(x0)) | → | D(b(b(b(b(x0))))) | 
| L(b(d(x0))) | → | D(c(c(x0))) | 
| L(a(c(c(c(x0))))) | → | D(d(d(x0))) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [Yb(x1)] | = | 3 · x1 + -∞ | 
| [c(x1)] | = | 8 · x1 + -∞ | 
| [Yc(x1)] | = | 8 · x1 + -∞ | 
| [d(x1)] | = | 13 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 8 · x1 + -∞ | 
| [Ya(x1)] | = | 2 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Yd(x1)] | = | 13 · x1 + -∞ | 
| [Xc(x1)] | = | 8 · x1 + -∞ | 
| [b(x1)] | = | 3 · x1 + -∞ | 
| [B(x1)] | = | 8 · x1 + -∞ | 
| [Xa(x1)] | = | 2 · x1 + -∞ | 
| [R(x1)] | = | 8 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [Xb(x1)] | = | 3 · x1 + -∞ | 
| [Xd(x1)] | = | 13 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [a(x1)] | = | 2 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(d(x0))) | → | V(Xd(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(c(c(c(a(x0))))) | → | D(d(d(x0))) | 
| L(d(b(x0))) | → | D(c(c(x0))) | 
| L(c(x0)) | → | D(a(a(a(a(x0))))) | 
| L(b(d(x0))) | → | D(c(c(x0))) | 
| L(a(c(c(c(x0))))) | → | D(d(d(x0))) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [Yb(x1)] | = | 4 · x1 + -∞ | 
| [c(x1)] | = | 6 · x1 + -∞ | 
| [Yc(x1)] | = | 6 · x1 + -∞ | 
| [d(x1)] | = | 8 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 0 · x1 + -∞ | 
| [Ya(x1)] | = | 1 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Yd(x1)] | = | 8 · x1 + -∞ | 
| [Xc(x1)] | = | 6 · x1 + -∞ | 
| [b(x1)] | = | 4 · x1 + -∞ | 
| [B(x1)] | = | 0 · x1 + -∞ | 
| [Xa(x1)] | = | 1 · x1 + -∞ | 
| [R(x1)] | = | 0 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [Xb(x1)] | = | 4 · x1 + -∞ | 
| [Xd(x1)] | = | 8 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [a(x1)] | = | 1 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(d(x0))) | → | V(Xd(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| L(d(b(x0))) | → | D(c(c(x0))) | 
| L(b(d(x0))) | → | D(c(c(x0))) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| R(D(x0)) | → | B(x0) | 
| [Yb(x1)] | = | 0 · x1 + -∞ | 
| [c(x1)] | = | 0 · x1 + -∞ | 
| [Yc(x1)] | = | 0 · x1 + -∞ | 
| [d(x1)] | = | 9 · x1 + -∞ | 
| [V(x1)] | = | 1 · x1 + -∞ | 
| [W(x1)] | = | 7 · x1 + -∞ | 
| [Ya(x1)] | = | 0 · x1 + -∞ | 
| [D(x1)] | = | 8 · x1 + -∞ | 
| [Yd(x1)] | = | 9 · x1 + -∞ | 
| [Xc(x1)] | = | 0 · x1 + -∞ | 
| [b(x1)] | = | 0 · x1 + -∞ | 
| [B(x1)] | = | 8 · x1 + -∞ | 
| [Xa(x1)] | = | 0 · x1 + -∞ | 
| [R(x1)] | = | 8 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [Xb(x1)] | = | 0 · x1 + -∞ | 
| [Xd(x1)] | = | 9 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [a(x1)] | = | 0 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(x0) | → | x0 | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| M(V(a(x0))) | → | V(Xa(x0)) | 
| M(V(d(x0))) | → | V(Xd(x0)) | 
| M(V(b(x0))) | → | V(Xb(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xc(E(x0)) | → | c(E(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| Xb(E(x0)) | → | b(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| [Yb(x1)] | = | 0 · x1 + -∞ | 
| [c(x1)] | = | 0 · x1 + -∞ | 
| [Yc(x1)] | = | 0 · x1 + -∞ | 
| [d(x1)] | = | 8 · x1 + -∞ | 
| [V(x1)] | = | 2 · x1 + -∞ | 
| [W(x1)] | = | 0 · x1 + -∞ | 
| [Ya(x1)] | = | 8 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Yd(x1)] | = | 8 · x1 + -∞ | 
| [Xc(x1)] | = | 3 · x1 + -∞ | 
| [b(x1)] | = | 0 · x1 + -∞ | 
| [B(x1)] | = | 11 · x1 + -∞ | 
| [Xa(x1)] | = | 8 · x1 + -∞ | 
| [R(x1)] | = | 2 · x1 + -∞ | 
| [E(x1)] | = | 0 · x1 + -∞ | 
| [Xb(x1)] | = | 2 · x1 + -∞ | 
| [Xd(x1)] | = | 8 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [a(x1)] | = | 8 · x1 + -∞ | 
| [M(x1)] | = | 3 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| M(V(c(x0))) | → | V(Xc(x0)) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xa(E(x0)) | → | a(E(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
| [Yb(x1)] | = | 0 · x1 + -∞ | 
| [c(x1)] | = | 2 · x1 + -∞ | 
| [Yc(x1)] | = | 2 · x1 + -∞ | 
| [d(x1)] | = | 1 · x1 + -∞ | 
| [V(x1)] | = | 0 · x1 + -∞ | 
| [W(x1)] | = | 0 · x1 + -∞ | 
| [Ya(x1)] | = | 4 · x1 + -∞ | 
| [D(x1)] | = | 0 · x1 + -∞ | 
| [Yd(x1)] | = | 1 · x1 + -∞ | 
| [Xc(x1)] | = | 0 · x1 + -∞ | 
| [b(x1)] | = | 0 · x1 + -∞ | 
| [B(x1)] | = | 0 · x1 + -∞ | 
| [Xa(x1)] | = | 10 · x1 + -∞ | 
| [R(x1)] | = | 0 · x1 + -∞ | 
| [E(x1)] | = | 13 · x1 + -∞ | 
| [Xb(x1)] | = | 1 · x1 + -∞ | 
| [Xd(x1)] | = | 1 · x1 + -∞ | 
| [L(x1)] | = | 0 · x1 + -∞ | 
| [a(x1)] | = | 4 · x1 + -∞ | 
| [M(x1)] | = | 0 · x1 + -∞ | 
| B(x0) | → | W(M(M(M(V(x0))))) | 
| Xc(c(x0)) | → | c(Xc(x0)) | 
| Xc(a(x0)) | → | a(Xc(x0)) | 
| Xc(d(x0)) | → | d(Xc(x0)) | 
| Xc(b(x0)) | → | b(Xc(x0)) | 
| Xa(c(x0)) | → | c(Xa(x0)) | 
| Xa(a(x0)) | → | a(Xa(x0)) | 
| Xa(d(x0)) | → | d(Xa(x0)) | 
| Xa(b(x0)) | → | b(Xa(x0)) | 
| Xd(c(x0)) | → | c(Xd(x0)) | 
| Xd(a(x0)) | → | a(Xd(x0)) | 
| Xd(d(x0)) | → | d(Xd(x0)) | 
| Xd(b(x0)) | → | b(Xd(x0)) | 
| Xb(c(x0)) | → | c(Xb(x0)) | 
| Xb(a(x0)) | → | a(Xb(x0)) | 
| Xb(d(x0)) | → | d(Xb(x0)) | 
| Xb(b(x0)) | → | b(Xb(x0)) | 
| Xd(E(x0)) | → | d(E(x0)) | 
| W(V(x0)) | → | R(L(x0)) | 
| L(c(x0)) | → | Yc(L(x0)) | 
| L(a(x0)) | → | Ya(L(x0)) | 
| L(d(x0)) | → | Yd(L(x0)) | 
| L(b(x0)) | → | Yb(L(x0)) | 
| Yc(D(x0)) | → | D(c(x0)) | 
| Ya(D(x0)) | → | D(a(x0)) | 
| Yd(D(x0)) | → | D(d(x0)) | 
| Yb(D(x0)) | → | D(b(x0)) | 
final states:
{41, 39, 37, 35, 34, 33, 32, 31, 29, 27, 26, 25, 24, 22, 21, 20, 19, 17, 16, 15, 14, 12, 11, 10, 9, 7, 1}
transitions:
| 33 | → | 30 | 
| 25 | → | 23 | 
| 32 | → | 30 | 
| 10 | → | 8 | 
| 15 | → | 13 | 
| 9 | → | 8 | 
| 34 | → | 30 | 
| 20 | → | 18 | 
| 31 | → | 30 | 
| 26 | → | 23 | 
| 21 | → | 18 | 
| 22 | → | 23 | 
| 11 | → | 8 | 
| 16 | → | 13 | 
| 14 | → | 13 | 
| 12 | → | 13 | 
| 7 | → | 8 | 
| 17 | → | 18 | 
| 24 | → | 23 | 
| 19 | → | 18 | 
| 27 | → | 18 | 
| Xb0(2) | → | 23 | 
| c0(23) | → | 22 | 
| c0(13) | → | 12 | 
| c0(2) | → | 36 | 
| c0(8) | → | 7 | 
| c0(18) | → | 17 | 
| D0(36) | → | 35 | 
| D0(40) | → | 39 | 
| D0(38) | → | 37 | 
| D0(42) | → | 41 | 
| Xa0(2) | → | 13 | 
| a0(8) | → | 9 | 
| a0(2) | → | 38 | 
| a0(13) | → | 14 | 
| a0(18) | → | 19 | 
| a0(23) | → | 24 | 
| Yd0(30) | → | 33 | 
| Xd0(2) | → | 18 | 
| R0(30) | → | 29 | 
| W0(6) | → | 1 | 
| d0(28) | → | 27 | 
| d0(8) | → | 10 | 
| d0(2) | → | 40 | 
| d0(18) | → | 20 | 
| d0(13) | → | 15 | 
| d0(23) | → | 25 | 
| M0(5) | → | 6 | 
| M0(4) | → | 5 | 
| M0(3) | → | 4 | 
| V0(2) | → | 3 | 
| E0(2) | → | 28 | 
| f200 | → | 2 | 
| Ya0(30) | → | 32 | 
| Yc0(30) | → | 31 | 
| Xc0(2) | → | 8 | 
| Yb0(30) | → | 34 | 
| L0(2) | → | 30 | 
| b0(18) | → | 21 | 
| b0(23) | → | 26 | 
| b0(2) | → | 42 | 
| b0(8) | → | 11 | 
| b0(13) | → | 16 |