YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a(a(x0)) | 
→ | 
b(c(c(c(x0)))) | 
| 
b(c(x0)) | 
→ | 
d(d(d(d(x0)))) | 
| 
a(x0) | 
→ | 
d(c(d(x0))) | 
| 
b(b(x0)) | 
→ | 
c(c(c(x0))) | 
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(d(d(x0))) | 
→ | 
a(x0) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [c(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
7 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(a(x0)) | 
→ | 
b(c(c(c(x0)))) | 
| 
b(c(x0)) | 
→ | 
d(d(d(d(x0)))) | 
| 
a(x0) | 
→ | 
d(c(d(x0))) | 
| 
c(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
c(d(d(x0))) | 
→ | 
a(x0) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [c(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(a(x0)) | 
→ | 
b(c(c(c(x0)))) | 
| 
b(c(x0)) | 
→ | 
d(d(d(d(x0)))) | 
| 
a(x0) | 
→ | 
d(c(d(x0))) | 
| 
c(d(d(x0))) | 
→ | 
a(x0) | 
          remain.
        1.1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
a#(a(x0)) | 
→ | 
c#(x0) | 
| 
a#(a(x0)) | 
→ | 
c#(c(x0)) | 
| 
a#(a(x0)) | 
→ | 
c#(c(c(x0))) | 
| 
a#(a(x0)) | 
→ | 
b#(c(c(c(x0)))) | 
| 
a#(x0) | 
→ | 
c#(d(x0)) | 
| 
c#(d(d(x0))) | 
→ | 
a#(x0) | 
1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
        component.