YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
1(1(x0)) | 
→ | 
4(3(x0)) | 
| 
1(2(x0)) | 
→ | 
2(1(x0)) | 
| 
2(2(x0)) | 
→ | 
1(1(1(x0))) | 
| 
3(3(x0)) | 
→ | 
5(6(x0)) | 
| 
3(4(x0)) | 
→ | 
1(1(x0)) | 
| 
4(4(x0)) | 
→ | 
3(x0) | 
| 
5(5(x0)) | 
→ | 
6(2(x0)) | 
| 
5(6(x0)) | 
→ | 
1(2(x0)) | 
| 
6(6(x0)) | 
→ | 
2(1(x0)) | 
Proof
1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
1(1(x0)) | 
→ | 
3(4(x0)) | 
| 
2(1(x0)) | 
→ | 
1(2(x0)) | 
| 
2(2(x0)) | 
→ | 
1(1(1(x0))) | 
| 
3(3(x0)) | 
→ | 
6(5(x0)) | 
| 
4(3(x0)) | 
→ | 
1(1(x0)) | 
| 
4(4(x0)) | 
→ | 
3(x0) | 
| 
5(5(x0)) | 
→ | 
2(6(x0)) | 
| 
6(5(x0)) | 
→ | 
2(1(x0)) | 
| 
6(6(x0)) | 
→ | 
1(2(x0)) | 
1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
1#(1(x0)) | 
→ | 
4#(x0) | 
| 
1#(1(x0)) | 
→ | 
3#(4(x0)) | 
| 
2#(1(x0)) | 
→ | 
2#(x0) | 
| 
2#(1(x0)) | 
→ | 
1#(2(x0)) | 
| 
2#(2(x0)) | 
→ | 
1#(x0) | 
| 
2#(2(x0)) | 
→ | 
1#(1(x0)) | 
| 
2#(2(x0)) | 
→ | 
1#(1(1(x0))) | 
| 
3#(3(x0)) | 
→ | 
5#(x0) | 
| 
3#(3(x0)) | 
→ | 
6#(5(x0)) | 
| 
4#(3(x0)) | 
→ | 
1#(x0) | 
| 
4#(3(x0)) | 
→ | 
1#(1(x0)) | 
| 
4#(4(x0)) | 
→ | 
3#(x0) | 
| 
5#(5(x0)) | 
→ | 
6#(x0) | 
| 
5#(5(x0)) | 
→ | 
2#(6(x0)) | 
| 
6#(5(x0)) | 
→ | 
1#(x0) | 
| 
6#(5(x0)) | 
→ | 
2#(1(x0)) | 
| 
6#(6(x0)) | 
→ | 
2#(x0) | 
| 
6#(6(x0)) | 
→ | 
1#(2(x0)) | 
1.1.1 Reduction Pair Processor
        Using the linear polynomial interpretation over the naturals
| [6(x1)] | 
 =  | 
1 · 
                    x1 + 20 | 
| [3#(x1)] | 
 =  | 
1 · 
                    x1 + 10 | 
| [3(x1)] | 
 =  | 
1 · 
                    x1 + 21 | 
| [2(x1)] | 
 =  | 
1 · 
                    x1 + 24 | 
| [5(x1)] | 
 =  | 
1 · 
                    x1 + 22 | 
| [5#(x1)] | 
 =  | 
1 · 
                    x1 + 24 | 
| [1(x1)] | 
 =  | 
1 · 
                    x1 + 16 | 
| [4#(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [6#(x1)] | 
 =  | 
1 · 
                    x1 + 9 | 
| [2#(x1)] | 
 =  | 
1 · 
                    x1 + 13 | 
| [1#(x1)] | 
 =  | 
1 · 
                    x1 + 5 | 
| [4(x1)] | 
 =  | 
1 · 
                    x1 + 11 | 
          the
          pairs
| 
1#(1(x0)) | 
→ | 
3#(4(x0)) | 
| 
2#(1(x0)) | 
→ | 
1#(2(x0)) | 
| 
2#(2(x0)) | 
→ | 
1#(1(1(x0))) | 
| 
3#(3(x0)) | 
→ | 
6#(5(x0)) | 
| 
4#(3(x0)) | 
→ | 
1#(1(x0)) | 
| 
6#(6(x0)) | 
→ | 
1#(2(x0)) | 
          remain.
        1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 1
        component.