YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right1(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right2(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(d(x0)) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right1(b(End(x0))) | 
→ | 
Left(c(d(c(End(x0))))) | 
| 
Right2(b(b(End(x0)))) | 
→ | 
Left(c(d(c(End(x0))))) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right4(c(End(x0))) | 
→ | 
Left(g(g(End(x0)))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right1(c(x0)) | 
→ | 
Ac(Right1(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(b(x0))) | 
→ | 
c(d(c(x0))) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
c(d(x0)) | 
→ | 
g(g(x0)) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [Ab(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Right2(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [Aa(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [g(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [Begin(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [Wait(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ag(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [Ac(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [Ad(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right3(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [Right6(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Right4(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Right5(x1)] | 
 =  | 
6 · 
                    x1 + 
                -∞
             | 
| [Left(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right1(x1)] | 
 =  | 
8 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right1(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(d(x0)) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right2(b(b(End(x0)))) | 
→ | 
Left(c(d(c(End(x0))))) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right4(c(End(x0))) | 
→ | 
Left(g(g(End(x0)))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right1(c(x0)) | 
→ | 
Ac(Right1(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
c(d(x0)) | 
→ | 
g(g(x0)) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [Ab(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right2(x1)] | 
 =  | 
10 · 
                    x1 + 
                -∞
             | 
| [Aa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [g(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Begin(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Wait(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ag(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ac(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [Ad(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right6(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right4(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
5 · 
                    x1 + 
                -∞
             | 
| [End(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right5(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Left(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
Begin(b(b(x0))) | 
→ | 
Wait(Right1(x0)) | 
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(d(x0)) | 
→ | 
Wait(Right4(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right2(b(b(End(x0)))) | 
→ | 
Left(c(d(c(End(x0))))) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right1(c(x0)) | 
→ | 
Ac(Right1(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Ab(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right2(x1)] | 
 =  | 
11 · 
                    x1 + 0 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [g(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Begin(x1)] | 
 =  | 
8 · 
                    x1 + 6 | 
| [Wait(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ag(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ac(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ad(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
8 · 
                    x1 + 6 | 
| [Right6(x1)] | 
 =  | 
8 · 
                    x1 + 6 | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right4(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 2 | 
| [Right5(x1)] | 
 =  | 
8 · 
                    x1 + 6 | 
| [Left(x1)] | 
 =  | 
8 · 
                    x1 + 6 | 
| [d(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
          the
          rules
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right2(b(b(End(x0)))) | 
→ | 
Left(c(d(c(End(x0))))) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right1(c(x0)) | 
→ | 
Ac(Right1(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [Ab(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right2(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Aa(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [g(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Begin(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Wait(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ag(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Ac(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [Ad(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right3(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right6(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right4(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 
                -∞
             | 
| [End(x1)] | 
 =  | 
3 · 
                    x1 + 
                -∞
             | 
| [Right5(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Left(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [Right1(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right1(c(x0)) | 
→ | 
Ac(Right1(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(Begin(x0)) | 
→ | 
Right3(Wait(x0)) | 
| 
g(g(Begin(x0))) | 
→ | 
Right5(Wait(x0)) | 
| 
g(Begin(x0)) | 
→ | 
Right6(Wait(x0)) | 
| 
End(b(Right3(x0))) | 
→ | 
End(g(g(a(Left(x0))))) | 
| 
End(g(Right5(x0))) | 
→ | 
End(b(b(Left(x0)))) | 
| 
End(g(g(Right6(x0)))) | 
→ | 
End(b(b(Left(x0)))) | 
| 
a(Right1(x0)) | 
→ | 
Right1(Aa(x0)) | 
| 
a(Right2(x0)) | 
→ | 
Right2(Aa(x0)) | 
| 
a(Right3(x0)) | 
→ | 
Right3(Aa(x0)) | 
| 
a(Right4(x0)) | 
→ | 
Right4(Aa(x0)) | 
| 
a(Right5(x0)) | 
→ | 
Right5(Aa(x0)) | 
| 
a(Right6(x0)) | 
→ | 
Right6(Aa(x0)) | 
| 
g(Right1(x0)) | 
→ | 
Right1(Ag(x0)) | 
| 
g(Right2(x0)) | 
→ | 
Right2(Ag(x0)) | 
| 
g(Right3(x0)) | 
→ | 
Right3(Ag(x0)) | 
| 
g(Right4(x0)) | 
→ | 
Right4(Ag(x0)) | 
| 
g(Right5(x0)) | 
→ | 
Right5(Ag(x0)) | 
| 
g(Right6(x0)) | 
→ | 
Right6(Ag(x0)) | 
| 
d(Right1(x0)) | 
→ | 
Right1(Ad(x0)) | 
| 
d(Right2(x0)) | 
→ | 
Right2(Ad(x0)) | 
| 
d(Right3(x0)) | 
→ | 
Right3(Ad(x0)) | 
| 
d(Right4(x0)) | 
→ | 
Right4(Ad(x0)) | 
| 
d(Right5(x0)) | 
→ | 
Right5(Ad(x0)) | 
| 
d(Right6(x0)) | 
→ | 
Right6(Ad(x0)) | 
| 
b(Right1(x0)) | 
→ | 
Right1(Ab(x0)) | 
| 
b(Right2(x0)) | 
→ | 
Right2(Ab(x0)) | 
| 
b(Right3(x0)) | 
→ | 
Right3(Ab(x0)) | 
| 
b(Right4(x0)) | 
→ | 
Right4(Ab(x0)) | 
| 
b(Right5(x0)) | 
→ | 
Right5(Ab(x0)) | 
| 
b(Right6(x0)) | 
→ | 
Right6(Ab(x0)) | 
| 
c(Right1(x0)) | 
→ | 
Right1(Ac(x0)) | 
| 
c(Right2(x0)) | 
→ | 
Right2(Ac(x0)) | 
| 
c(Right3(x0)) | 
→ | 
Right3(Ac(x0)) | 
| 
c(Right4(x0)) | 
→ | 
Right4(Ac(x0)) | 
| 
c(Right5(x0)) | 
→ | 
Right5(Ac(x0)) | 
| 
c(Right6(x0)) | 
→ | 
Right6(Ac(x0)) | 
| 
Left(Aa(x0)) | 
→ | 
a(Left(x0)) | 
| 
Left(Ag(x0)) | 
→ | 
g(Left(x0)) | 
| 
Left(Ad(x0)) | 
→ | 
d(Left(x0)) | 
| 
Left(Ab(x0)) | 
→ | 
b(Left(x0)) | 
| 
Left(Ac(x0)) | 
→ | 
c(Left(x0)) | 
| 
Left(Wait(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
d(g(x0)) | 
| 
b(b(x0)) | 
→ | 
g(g(a(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Ab(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right2(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [g(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Begin(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Wait(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ag(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ac(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Ad(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Right6(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right4(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [c(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right5(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Left(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [d(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
4 · 
                    x1 + 8 | 
          the
          rules
| 
b(Begin(x0)) | 
→ | 
Right3(Wait(x0)) | 
| 
g(g(Begin(x0))) | 
→ | 
Right5(Wait(x0)) | 
| 
g(Begin(x0)) | 
→ | 
Right6(Wait(x0)) | 
| 
End(b(Right3(x0))) | 
→ | 
End(g(g(a(Left(x0))))) | 
| 
End(g(Right5(x0))) | 
→ | 
End(b(b(Left(x0)))) | 
| 
End(g(g(Right6(x0)))) | 
→ | 
End(b(b(Left(x0)))) | 
| 
a(Right1(x0)) | 
→ | 
Right1(Aa(x0)) | 
| 
a(Right2(x0)) | 
→ | 
Right2(Aa(x0)) | 
| 
a(Right3(x0)) | 
→ | 
Right3(Aa(x0)) | 
| 
a(Right4(x0)) | 
→ | 
Right4(Aa(x0)) | 
| 
a(Right5(x0)) | 
→ | 
Right5(Aa(x0)) | 
| 
a(Right6(x0)) | 
→ | 
Right6(Aa(x0)) | 
| 
g(Right1(x0)) | 
→ | 
Right1(Ag(x0)) | 
| 
g(Right2(x0)) | 
→ | 
Right2(Ag(x0)) | 
| 
g(Right3(x0)) | 
→ | 
Right3(Ag(x0)) | 
| 
g(Right4(x0)) | 
→ | 
Right4(Ag(x0)) | 
| 
g(Right5(x0)) | 
→ | 
Right5(Ag(x0)) | 
| 
g(Right6(x0)) | 
→ | 
Right6(Ag(x0)) | 
| 
d(Right1(x0)) | 
→ | 
Right1(Ad(x0)) | 
| 
d(Right2(x0)) | 
→ | 
Right2(Ad(x0)) | 
| 
d(Right3(x0)) | 
→ | 
Right3(Ad(x0)) | 
| 
d(Right4(x0)) | 
→ | 
Right4(Ad(x0)) | 
| 
d(Right5(x0)) | 
→ | 
Right5(Ad(x0)) | 
| 
d(Right6(x0)) | 
→ | 
Right6(Ad(x0)) | 
| 
b(Right1(x0)) | 
→ | 
Right1(Ab(x0)) | 
| 
b(Right2(x0)) | 
→ | 
Right2(Ab(x0)) | 
| 
b(Right3(x0)) | 
→ | 
Right3(Ab(x0)) | 
| 
b(Right4(x0)) | 
→ | 
Right4(Ab(x0)) | 
| 
b(Right5(x0)) | 
→ | 
Right5(Ab(x0)) | 
| 
b(Right6(x0)) | 
→ | 
Right6(Ab(x0)) | 
| 
c(Right2(x0)) | 
→ | 
Right2(Ac(x0)) | 
| 
c(Right3(x0)) | 
→ | 
Right3(Ac(x0)) | 
| 
c(Right4(x0)) | 
→ | 
Right4(Ac(x0)) | 
| 
c(Right5(x0)) | 
→ | 
Right5(Ac(x0)) | 
| 
c(Right6(x0)) | 
→ | 
Right6(Ac(x0)) | 
| 
Left(Aa(x0)) | 
→ | 
a(Left(x0)) | 
| 
Left(Ag(x0)) | 
→ | 
g(Left(x0)) | 
| 
Left(Ad(x0)) | 
→ | 
d(Left(x0)) | 
| 
Left(Ab(x0)) | 
→ | 
b(Left(x0)) | 
| 
Left(Ac(x0)) | 
→ | 
c(Left(x0)) | 
| 
Left(Wait(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
d(g(x0)) | 
| 
b(b(x0)) | 
→ | 
g(g(a(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1.1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right4(c(x0)) | 
→ | 
Ac(Right4(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Ab(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right2(x1)] | 
 =  | 
2 · 
                    x1 + 2 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [g(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Begin(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Wait(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Ag(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ac(x1)] | 
 =  | 
1 · 
                    x1 + 2 | 
| [Ad(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Right6(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right4(x1)] | 
 =  | 
3 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 1 | 
| [End(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right5(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Left(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [d(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
          the
          rules
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right2(c(x0)) | 
→ | 
Ac(Right2(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [Ab(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right2(x1)] | 
 =  | 
6 · 
                    x1 + 6 | 
| [Aa(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [g(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Begin(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Wait(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Ag(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Ac(x1)] | 
 =  | 
1 · 
                    x1 + 4 | 
| [Ad(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Right6(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right4(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 2 | 
| [End(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Right5(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [Left(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
| [d(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [Right1(x1)] | 
 =  | 
2 · 
                    x1 + 0 | 
          the
          rules
| 
Begin(b(x0)) | 
→ | 
Wait(Right3(x0)) | 
| 
Begin(g(g(x0))) | 
→ | 
Wait(Right5(x0)) | 
| 
Begin(g(x0)) | 
→ | 
Wait(Right6(x0)) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right1(a(x0)) | 
→ | 
Aa(Right1(x0)) | 
| 
Right2(a(x0)) | 
→ | 
Aa(Right2(x0)) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right4(a(x0)) | 
→ | 
Aa(Right4(x0)) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right1(g(x0)) | 
→ | 
Ag(Right1(x0)) | 
| 
Right2(g(x0)) | 
→ | 
Ag(Right2(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right4(g(x0)) | 
→ | 
Ag(Right4(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right1(d(x0)) | 
→ | 
Ad(Right1(x0)) | 
| 
Right2(d(x0)) | 
→ | 
Ad(Right2(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right4(d(x0)) | 
→ | 
Ad(Right4(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right1(b(x0)) | 
→ | 
Ab(Right1(x0)) | 
| 
Right2(b(x0)) | 
→ | 
Ab(Right2(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right4(b(x0)) | 
→ | 
Ab(Right4(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Wait(Left(x0)) | 
→ | 
Begin(x0) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1.1 Dependency Pair Transformation
          The following set of initial dependency pairs has been identified.
          
| 
Begin#(b(x0)) | 
→ | 
Right3#(x0) | 
| 
Begin#(b(x0)) | 
→ | 
Wait#(Right3(x0)) | 
| 
Begin#(g(g(x0))) | 
→ | 
Right5#(x0) | 
| 
Begin#(g(g(x0))) | 
→ | 
Wait#(Right5(x0)) | 
| 
Begin#(g(x0)) | 
→ | 
Right6#(x0) | 
| 
Begin#(g(x0)) | 
→ | 
Wait#(Right6(x0)) | 
| 
Right3#(b(End(x0))) | 
→ | 
g#(End(x0)) | 
| 
Right3#(b(End(x0))) | 
→ | 
g#(g(End(x0))) | 
| 
Right3#(b(End(x0))) | 
→ | 
a#(g(g(End(x0)))) | 
| 
Right5#(g(End(x0))) | 
→ | 
b#(End(x0)) | 
| 
Right5#(g(End(x0))) | 
→ | 
b#(b(End(x0))) | 
| 
Right6#(g(g(End(x0)))) | 
→ | 
b#(End(x0)) | 
| 
Right6#(g(g(End(x0)))) | 
→ | 
b#(b(End(x0))) | 
| 
Right1#(a(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(a(x0)) | 
→ | 
Aa#(Right1(x0)) | 
| 
Right2#(a(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(a(x0)) | 
→ | 
Aa#(Right2(x0)) | 
| 
Right3#(a(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(a(x0)) | 
→ | 
Aa#(Right3(x0)) | 
| 
Right4#(a(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(a(x0)) | 
→ | 
Aa#(Right4(x0)) | 
| 
Right5#(a(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(a(x0)) | 
→ | 
Aa#(Right5(x0)) | 
| 
Right6#(a(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(a(x0)) | 
→ | 
Aa#(Right6(x0)) | 
| 
Right1#(g(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(g(x0)) | 
→ | 
Ag#(Right1(x0)) | 
| 
Right2#(g(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(g(x0)) | 
→ | 
Ag#(Right2(x0)) | 
| 
Right3#(g(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(g(x0)) | 
→ | 
Ag#(Right3(x0)) | 
| 
Right4#(g(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(g(x0)) | 
→ | 
Ag#(Right4(x0)) | 
| 
Right5#(g(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(g(x0)) | 
→ | 
Ag#(Right5(x0)) | 
| 
Right6#(g(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(g(x0)) | 
→ | 
Ag#(Right6(x0)) | 
| 
Right1#(d(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(d(x0)) | 
→ | 
Ad#(Right1(x0)) | 
| 
Right2#(d(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(d(x0)) | 
→ | 
Ad#(Right2(x0)) | 
| 
Right3#(d(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(d(x0)) | 
→ | 
Ad#(Right3(x0)) | 
| 
Right4#(d(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(d(x0)) | 
→ | 
Ad#(Right4(x0)) | 
| 
Right5#(d(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(d(x0)) | 
→ | 
Ad#(Right5(x0)) | 
| 
Right6#(d(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(d(x0)) | 
→ | 
Ad#(Right6(x0)) | 
| 
Right1#(b(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(b(x0)) | 
→ | 
Ab#(Right1(x0)) | 
| 
Right2#(b(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(b(x0)) | 
→ | 
Ab#(Right2(x0)) | 
| 
Right3#(b(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(b(x0)) | 
→ | 
Ab#(Right3(x0)) | 
| 
Right4#(b(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(b(x0)) | 
→ | 
Ab#(Right4(x0)) | 
| 
Right5#(b(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(b(x0)) | 
→ | 
Ab#(Right5(x0)) | 
| 
Right6#(b(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(b(x0)) | 
→ | 
Ab#(Right6(x0)) | 
| 
Right3#(c(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(c(x0)) | 
→ | 
Ac#(Right3(x0)) | 
| 
Right5#(c(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(c(x0)) | 
→ | 
Ac#(Right5(x0)) | 
| 
Right6#(c(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(c(x0)) | 
→ | 
Ac#(Right6(x0)) | 
| 
Aa#(Left(x0)) | 
→ | 
a#(x0) | 
| 
Ag#(Left(x0)) | 
→ | 
g#(x0) | 
| 
Ab#(Left(x0)) | 
→ | 
b#(x0) | 
| 
Wait#(Left(x0)) | 
→ | 
Begin#(x0) | 
| 
a#(x0) | 
→ | 
g#(d(x0)) | 
| 
b#(b(x0)) | 
→ | 
g#(x0) | 
| 
b#(b(x0)) | 
→ | 
g#(g(x0)) | 
| 
b#(b(x0)) | 
→ | 
a#(g(g(x0))) | 
| 
g#(g(g(x0))) | 
→ | 
b#(x0) | 
| 
g#(g(g(x0))) | 
→ | 
b#(b(x0)) | 
1.1.1.1.1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 8
        components.
- 
                The
                1st
                component contains the
                pairs
| 
Wait#(Left(x0)) | 
→ | 
Begin#(x0) | 
| 
Begin#(g(x0)) | 
→ | 
Wait#(Right6(x0)) | 
| 
Begin#(g(g(x0))) | 
→ | 
Wait#(Right5(x0)) | 
| 
Begin#(b(x0)) | 
→ | 
Wait#(Right3(x0)) | 
1.1.1.1.1.1.1.1.1.1.1.1 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over the arctic semiring over the integers
| [Ab(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Aa(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 8 | 
| [g(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Ag(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Ac(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 12 | 
| [Ad(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 4 | 
| [Wait#(x1)] | 
 =  | 
0 · 
                    x1 + 0 | 
| [Right3(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [Right6(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [Begin#(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 4 | 
| [c(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 8 | 
| [End(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 4 | 
| [Right5(x1)] | 
 =  | 
8 · 
                    x1 + 4 | 
| [Left(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [d(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 0 | 
            together with the usable
            rules
| 
Right6(g(g(End(x0)))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right6(a(x0)) | 
→ | 
Aa(Right6(x0)) | 
| 
Right6(g(x0)) | 
→ | 
Ag(Right6(x0)) | 
| 
Right6(d(x0)) | 
→ | 
Ad(Right6(x0)) | 
| 
Right6(b(x0)) | 
→ | 
Ab(Right6(x0)) | 
| 
Right6(c(x0)) | 
→ | 
Ac(Right6(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
| 
Aa(Left(x0)) | 
→ | 
Left(a(x0)) | 
| 
Ag(Left(x0)) | 
→ | 
Left(g(x0)) | 
| 
Ad(Left(x0)) | 
→ | 
Left(d(x0)) | 
| 
Ab(Left(x0)) | 
→ | 
Left(b(x0)) | 
| 
Ac(Left(x0)) | 
→ | 
Left(c(x0)) | 
| 
Right5(g(End(x0))) | 
→ | 
Left(b(b(End(x0)))) | 
| 
Right5(a(x0)) | 
→ | 
Aa(Right5(x0)) | 
| 
Right5(g(x0)) | 
→ | 
Ag(Right5(x0)) | 
| 
Right5(d(x0)) | 
→ | 
Ad(Right5(x0)) | 
| 
Right5(b(x0)) | 
→ | 
Ab(Right5(x0)) | 
| 
Right5(c(x0)) | 
→ | 
Ac(Right5(x0)) | 
| 
Right3(b(End(x0))) | 
→ | 
Left(a(g(g(End(x0))))) | 
| 
Right3(a(x0)) | 
→ | 
Aa(Right3(x0)) | 
| 
Right3(g(x0)) | 
→ | 
Ag(Right3(x0)) | 
| 
Right3(d(x0)) | 
→ | 
Ad(Right3(x0)) | 
| 
Right3(b(x0)) | 
→ | 
Ab(Right3(x0)) | 
| 
Right3(c(x0)) | 
→ | 
Ac(Right3(x0)) | 
            (w.r.t. the implicit argument filter of the reduction pair),
          
          the
          pairs
| 
Begin#(g(x0)) | 
→ | 
Wait#(Right6(x0)) | 
| 
Begin#(g(g(x0))) | 
→ | 
Wait#(Right5(x0)) | 
| 
Begin#(b(x0)) | 
→ | 
Wait#(Right3(x0)) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.1.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                2nd
                component contains the
                pairs
| 
Right3#(c(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(b(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(d(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(g(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(a(x0)) | 
→ | 
Right3#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.2 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [Right3#(x1)] | 
 =  | 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [b(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [a(x1)] | 
 =  | 
| 1 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [c(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right3#(c(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(b(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(d(x0)) | 
→ | 
Right3#(x0) | 
| 
Right3#(g(x0)) | 
→ | 
Right3#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.2.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                3rd
                component contains the
                pairs
| 
Right5#(a(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(c(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(b(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(d(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(g(x0)) | 
→ | 
Right5#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.3 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
| 1 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [b(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [a(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [c(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [Right5#(x1)] | 
 =  | 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right5#(a(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(c(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(b(x0)) | 
→ | 
Right5#(x0) | 
| 
Right5#(d(x0)) | 
→ | 
Right5#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.3.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                4th
                component contains the
                pairs
| 
Right6#(a(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(c(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(b(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(d(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(g(x0)) | 
→ | 
Right6#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.4 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (3 x 3)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [b(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [a(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [c(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
| [Right6#(x1)] | 
 =  | 
| 1 | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
 · 
                    x1 + 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right6#(a(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(c(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(b(x0)) | 
→ | 
Right6#(x0) | 
| 
Right6#(d(x0)) | 
→ | 
Right6#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.4.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                5th
                component contains the
                pairs
| 
Right1#(a(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(b(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(d(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(g(x0)) | 
→ | 
Right1#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.5 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
| 1 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [Right1#(x1)] | 
 =  | 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [b(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [a(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right1#(a(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(b(x0)) | 
→ | 
Right1#(x0) | 
| 
Right1#(d(x0)) | 
→ | 
Right1#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.5.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                6th
                component contains the
                pairs
| 
Right2#(a(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(b(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(d(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(g(x0)) | 
→ | 
Right2#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.6 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
| 1 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [b(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [Right2#(x1)] | 
 =  | 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [a(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right2#(a(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(b(x0)) | 
→ | 
Right2#(x0) | 
| 
Right2#(d(x0)) | 
→ | 
Right2#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.6.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                7th
                component contains the
                pairs
| 
Right4#(a(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(b(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(d(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(g(x0)) | 
→ | 
Right4#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.7 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over (4 x 4)-matrices with strict dimension 1 
            over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
| 1 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 1 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [b(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [a(x1)] | 
 =  | 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [Right4#(x1)] | 
 =  | 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
  · 
                    x1 + 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 
                -∞
             | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
| [d(x1)] | 
 =  | 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
| 0 | 
0 | 
0 | 
0 | 
 
| 0 | 
0 | 
1 | 
0 | 
 
  · 
                    x1 + 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
| 0 | 
                -∞
             | 
                -∞
             | 
                -∞
             | 
 
 
 | 
            having no usable rules (w.r.t. the implicit argument filter of the
            reduction pair),
          
          the
          pairs
| 
Right4#(a(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(b(x0)) | 
→ | 
Right4#(x0) | 
| 
Right4#(d(x0)) | 
→ | 
Right4#(x0) | 
          remain.
        1.1.1.1.1.1.1.1.1.1.1.7.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.
 
- 
                The
                8th
                component contains the
                pairs
| 
b#(b(x0)) | 
→ | 
g#(g(x0)) | 
| 
g#(g(g(x0))) | 
→ | 
b#(b(x0)) | 
| 
b#(b(x0)) | 
→ | 
g#(x0) | 
| 
g#(g(g(x0))) | 
→ | 
b#(x0) | 
1.1.1.1.1.1.1.1.1.1.1.8 Reduction Pair Processor with Usable Rules
        Using the linear polynomial interpretation over the arctic semiring over the integers
| [g(x1)] | 
 =  | 
3 · 
                    x1 + 6 | 
| [b#(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
2 · 
                    x1 + 4 | 
| [g#(x1)] | 
 =  | 
0 · 
                    x1 + 0 | 
| [a(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 6 | 
| [d(x1)] | 
 =  | 
                -∞
             · 
                    x1 + 2 | 
            together with the usable
            rules
| 
g(g(g(x0))) | 
→ | 
b(b(x0)) | 
| 
b(b(x0)) | 
→ | 
a(g(g(x0))) | 
| 
a(x0) | 
→ | 
g(d(x0)) | 
            (w.r.t. the implicit argument filter of the reduction pair),
          
          the
          pair
          remains.
        1.1.1.1.1.1.1.1.1.1.1.8.1 Dependency Graph Processor
The dependency pairs are split into 0
        components.