YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
| 
a(b(x0)) | 
→ | 
b(d(x0)) | 
| 
a(c(x0)) | 
→ | 
d(d(d(x0))) | 
| 
b(d(x0)) | 
→ | 
a(c(b(x0))) | 
| 
c(f(x0)) | 
→ | 
d(d(c(x0))) | 
| 
d(d(x0)) | 
→ | 
f(x0) | 
| 
f(f(x0)) | 
→ | 
a(x0) | 
Proof
1 Rule Removal
      Using the
      linear polynomial interpretation over the naturals
| [f(x1)] | 
 =  | 
1 · 
                    x1 + 2 | 
| [a(x1)] | 
 =  | 
1 · 
                    x1 + 4 | 
| [c(x1)] | 
 =  | 
1 · 
                    x1 + 0 | 
| [b(x1)] | 
 =  | 
4 · 
                    x1 + 0 | 
| [d(x1)] | 
 =  | 
1 · 
                    x1 + 1 | 
          the
          rules
| 
a(b(x0)) | 
→ | 
b(d(x0)) | 
| 
b(d(x0)) | 
→ | 
a(c(b(x0))) | 
| 
c(f(x0)) | 
→ | 
d(d(c(x0))) | 
| 
d(d(x0)) | 
→ | 
f(x0) | 
| 
f(f(x0)) | 
→ | 
a(x0) | 
          remain.
        1.1 Rule Removal
      Using the
      linear polynomial interpretation over the arctic semiring over the integers
| [f(x1)] | 
 =  | 
4 · 
                    x1 + 
                -∞
             | 
| [a(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
| [c(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [b(x1)] | 
 =  | 
0 · 
                    x1 + 
                -∞
             | 
| [d(x1)] | 
 =  | 
2 · 
                    x1 + 
                -∞
             | 
          the
          rules
| 
a(b(x0)) | 
→ | 
b(d(x0)) | 
| 
b(d(x0)) | 
→ | 
a(c(b(x0))) | 
| 
c(f(x0)) | 
→ | 
d(d(c(x0))) | 
| 
d(d(x0)) | 
→ | 
f(x0) | 
          remain.
        1.1.1 String Reversal
        Since only unary symbols occur, one can reverse all terms and obtains the TRS        
        
| 
b(a(x0)) | 
→ | 
d(b(x0)) | 
| 
d(b(x0)) | 
→ | 
b(c(a(x0))) | 
| 
f(c(x0)) | 
→ | 
c(d(d(x0))) | 
| 
d(d(x0)) | 
→ | 
f(x0) | 
1.1.1.1 Bounds
        The given TRS is 
        match-bounded by 1.
        This is shown by the following automaton.
        
- 
final states:
{10, 7, 4, 1}
 
- 
transitions:
| 10 | 
 →  | 
8 | 
| 18 | 
 →  | 
1 | 
| 3 | 
 →  | 
29 | 
| 34 | 
 →  | 
9 | 
| 20 | 
 →  | 
9 | 
| 1 | 
 →  | 
3 | 
| 6 | 
 →  | 
31 | 
| 2 | 
 →  | 
15 | 
| 2 | 
 →  | 
19 | 
| 4 | 
 →  | 
8 | 
| 7 | 
 →  | 
9 | 
| 7 | 
 →  | 
10 | 
| 7 | 
 →  | 
20 | 
| 30 | 
 →  | 
3 | 
| 30 | 
 →  | 
1 | 
| 17 | 
 →  | 
23 | 
| 24 | 
 →  | 
16 | 
| 
d0(8) | 
 →  | 
9 | 
| 
d0(3) | 
 →  | 
1 | 
| 
d0(2) | 
 →  | 
8 | 
| 
b1(33) | 
 →  | 
34 | 
| 
b1(17) | 
 →  | 
18 | 
| 
c0(9) | 
 →  | 
7 | 
| 
c0(5) | 
 →  | 
6 | 
| 
a0(2) | 
 →  | 
5 | 
| 
c1(16) | 
 →  | 
17 | 
| 
c1(32) | 
 →  | 
33 | 
| 
f0(2) | 
 →  | 
10 | 
| 
b0(2) | 
 →  | 
3 | 
| 
b0(6) | 
 →  | 
4 | 
| 
a1(15) | 
 →  | 
16 | 
| 
a1(23) | 
 →  | 
24 | 
| 
a1(31) | 
 →  | 
32 | 
| 
f1(19) | 
 →  | 
20 | 
| 
f1(29) | 
 →  | 
30 | 
| 
f50
 | 
 →  | 
2 |