YES
Termination Proof
Termination Proof
by ttt2 (version ttt2 1.15)
Input
The rewrite relation of the following TRS is considered.
|
a(b(x0)) |
→ |
b(d(x0)) |
|
a(c(x0)) |
→ |
d(d(d(x0))) |
|
b(d(x0)) |
→ |
a(c(b(x0))) |
|
c(f(x0)) |
→ |
d(d(c(x0))) |
|
d(d(x0)) |
→ |
f(x0) |
|
f(f(x0)) |
→ |
a(x0) |
Proof
1 Rule Removal
Using the
linear polynomial interpretation over the naturals
| [f(x1)] |
= |
1 ·
x1 + 2 |
| [a(x1)] |
= |
1 ·
x1 + 4 |
| [c(x1)] |
= |
1 ·
x1 + 0 |
| [b(x1)] |
= |
4 ·
x1 + 0 |
| [d(x1)] |
= |
1 ·
x1 + 1 |
the
rules
|
a(b(x0)) |
→ |
b(d(x0)) |
|
b(d(x0)) |
→ |
a(c(b(x0))) |
|
c(f(x0)) |
→ |
d(d(c(x0))) |
|
d(d(x0)) |
→ |
f(x0) |
|
f(f(x0)) |
→ |
a(x0) |
remain.
1.1 Rule Removal
Using the
linear polynomial interpretation over the arctic semiring over the integers
| [f(x1)] |
= |
4 ·
x1 +
-∞
|
| [a(x1)] |
= |
2 ·
x1 +
-∞
|
| [c(x1)] |
= |
0 ·
x1 +
-∞
|
| [b(x1)] |
= |
0 ·
x1 +
-∞
|
| [d(x1)] |
= |
2 ·
x1 +
-∞
|
the
rules
|
a(b(x0)) |
→ |
b(d(x0)) |
|
b(d(x0)) |
→ |
a(c(b(x0))) |
|
c(f(x0)) |
→ |
d(d(c(x0))) |
|
d(d(x0)) |
→ |
f(x0) |
remain.
1.1.1 String Reversal
Since only unary symbols occur, one can reverse all terms and obtains the TRS
|
b(a(x0)) |
→ |
d(b(x0)) |
|
d(b(x0)) |
→ |
b(c(a(x0))) |
|
f(c(x0)) |
→ |
c(d(d(x0))) |
|
d(d(x0)) |
→ |
f(x0) |
1.1.1.1 Bounds
The given TRS is
match-bounded by 1.
This is shown by the following automaton.
-
final states:
{10, 7, 4, 1}
-
transitions:
| 10 |
→ |
8 |
| 18 |
→ |
1 |
| 3 |
→ |
29 |
| 34 |
→ |
9 |
| 20 |
→ |
9 |
| 1 |
→ |
3 |
| 6 |
→ |
31 |
| 2 |
→ |
15 |
| 2 |
→ |
19 |
| 4 |
→ |
8 |
| 7 |
→ |
9 |
| 7 |
→ |
10 |
| 7 |
→ |
20 |
| 30 |
→ |
3 |
| 30 |
→ |
1 |
| 17 |
→ |
23 |
| 24 |
→ |
16 |
|
d0(8) |
→ |
9 |
|
d0(3) |
→ |
1 |
|
d0(2) |
→ |
8 |
|
b1(33) |
→ |
34 |
|
b1(17) |
→ |
18 |
|
c0(9) |
→ |
7 |
|
c0(5) |
→ |
6 |
|
a0(2) |
→ |
5 |
|
c1(16) |
→ |
17 |
|
c1(32) |
→ |
33 |
|
f0(2) |
→ |
10 |
|
b0(2) |
→ |
3 |
|
b0(6) |
→ |
4 |
|
a1(15) |
→ |
16 |
|
a1(23) |
→ |
24 |
|
a1(31) |
→ |
32 |
|
f1(19) |
→ |
20 |
|
f1(29) |
→ |
30 |
|
f50
|
→ |
2 |