YES
by ttt2 (version ttt2 1.15)
The rewrite relation of the following TRS is considered.
| b(a(a(x0))) | → | a(b(c(x0))) |
| c(a(x0)) | → | a(c(x0)) |
| b(c(a(x0))) | → | a(b(c(x0))) |
| c(b(x0)) | → | d(x0) |
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| L(a(a(x0))) | → | L(a(b(c(x0)))) |
| c(R(x0)) | → | c(b(R(x0))) |
| b#(a(a(x0))) | → | c#(x0) |
| b#(a(a(x0))) | → | b#(c(x0)) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
| c#(a(x0)) | → | c#(x0) |
| c#(a(x0)) | → | a#(c(x0)) |
| b#(c(a(x0))) | → | c#(x0) |
| b#(c(a(x0))) | → | b#(c(x0)) |
| b#(c(a(x0))) | → | a#(b(c(x0))) |
| c#(b(x0)) | → | d#(x0) |
| a#(d(x0)) | → | a#(x0) |
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | a#(x0) |
| d#(x0) | → | b#(a(x0)) |
| L#(a(a(x0))) | → | c#(x0) |
| L#(a(a(x0))) | → | b#(c(x0)) |
| L#(a(a(x0))) | → | a#(b(c(x0))) |
| L#(a(a(x0))) | → | L#(a(b(c(x0)))) |
| c#(R(x0)) | → | b#(R(x0)) |
| c#(R(x0)) | → | c#(b(R(x0))) |
The dependency pairs are split into 2 components.
| L#(a(a(x0))) | → | L#(a(b(c(x0)))) |
| [b(x1)] | = | -1 · x1 + 0 |
| [d(x1)] | = | 1 · x1 + 2 |
| [R(x1)] | = | 11 · x1 + 0 |
| [L#(x1)] | = | 0 · x1 + 3 |
| [a(x1)] | = | 2 · x1 + 2 |
| [c(x1)] | = | 2 · x1 + 1 |
| c(a(x0)) | → | a(c(x0)) |
| c(b(x0)) | → | d(x0) |
| c(R(x0)) | → | c(b(R(x0))) |
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| b(a(a(x0))) | → | a(b(c(x0))) |
| b(c(a(x0))) | → | a(b(c(x0))) |
There are no pairs anymore.
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | b#(a(x0)) |
| b#(c(a(x0))) | → | a#(b(c(x0))) |
| a#(d(x0)) | → | a#(x0) |
| b#(c(a(x0))) | → | b#(c(x0)) |
| b#(c(a(x0))) | → | c#(x0) |
| c#(R(x0)) | → | c#(b(R(x0))) |
| c#(b(x0)) | → | d#(x0) |
| d#(x0) | → | a#(x0) |
| c#(a(x0)) | → | a#(c(x0)) |
| c#(a(x0)) | → | c#(x0) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
| b#(a(a(x0))) | → | b#(c(x0)) |
| b#(a(a(x0))) | → | c#(x0) |
| [a#(x1)] | = | 2 · x1 + -∞ |
| [b(x1)] | = | 0 · x1 + -∞ |
| [d(x1)] | = | 2 · x1 + -∞ |
| [R(x1)] | = | 0 · x1 + -∞ |
| [a(x1)] | = | 2 · x1 + -∞ |
| [c#(x1)] | = | 2 · x1 + -∞ |
| [d#(x1)] | = | 2 · x1 + -∞ |
| [b#(x1)] | = | 0 · x1 + -∞ |
| [c(x1)] | = | 2 · x1 + -∞ |
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| b(a(a(x0))) | → | a(b(c(x0))) |
| b(c(a(x0))) | → | a(b(c(x0))) |
| c(a(x0)) | → | a(c(x0)) |
| c(b(x0)) | → | d(x0) |
| c(R(x0)) | → | c(b(R(x0))) |
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | b#(a(x0)) |
| b#(c(a(x0))) | → | a#(b(c(x0))) |
| c#(R(x0)) | → | c#(b(R(x0))) |
| c#(b(x0)) | → | d#(x0) |
| d#(x0) | → | a#(x0) |
| c#(a(x0)) | → | a#(c(x0)) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
The dependency pairs are split into 1 component.
| d#(x0) | → | a#(x0) |
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | b#(a(x0)) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
| b#(c(a(x0))) | → | a#(b(c(x0))) |
| [a#(x1)] | = | 0 · x1 + 2 |
| [b(x1)] | = | -∞ · x1 + 0 |
| [d(x1)] | = | -∞ · x1 + 0 |
| [R(x1)] | = | 0 · x1 + 2 |
| [a(x1)] | = | -∞ · x1 + 0 |
| [d#(x1)] | = | 1 · x1 + 2 |
| [b#(x1)] | = | 2 · x1 + 0 |
| [c(x1)] | = | 5 · x1 + 3 |
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| b(a(a(x0))) | → | a(b(c(x0))) |
| b(c(a(x0))) | → | a(b(c(x0))) |
| d#(x0) | → | a#(x0) |
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | b#(a(x0)) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
| [a#(x1)] | = |
|
||||||||
| [b(x1)] | = |
|
||||||||
| [d(x1)] | = |
|
||||||||
| [R(x1)] | = |
|
||||||||
| [a(x1)] | = |
|
||||||||
| [d#(x1)] | = |
|
||||||||
| [b#(x1)] | = |
|
||||||||
| [c(x1)] | = |
|
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| b(a(a(x0))) | → | a(b(c(x0))) |
| b(c(a(x0))) | → | a(b(c(x0))) |
| a#(d(x0)) | → | d#(a(x0)) |
| d#(x0) | → | b#(a(x0)) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
| [a#(x1)] | = | 0 · x1 + 0 |
| [b(x1)] | = | -∞ · x1 + 0 |
| [d(x1)] | = | 9 · x1 + 4 |
| [R(x1)] | = | 11 · x1 + 11 |
| [a(x1)] | = | 0 · x1 + -∞ |
| [d#(x1)] | = | 4 · x1 + 3 |
| [b#(x1)] | = | 0 · x1 + 0 |
| [c(x1)] | = | 15 · x1 + 15 |
| a(d(x0)) | → | d(a(x0)) |
| d(x0) | → | b(a(x0)) |
| b(a(a(x0))) | → | a(b(c(x0))) |
| b(c(a(x0))) | → | a(b(c(x0))) |
| b#(a(a(x0))) | → | a#(b(c(x0))) |
The dependency pairs are split into 0 components.