

Definition (Regulärer Ausdruck)

Sei Σ ein Alphabet. Ein regulärer Ausdruck über Σ ist induktiv definiert:

- ullet \emptyset ist ein regulärer Ausdruck
- <math><math><math><math>ist ein regulärer Ausdruck
- ullet $a \ \mathrm{mit} \ a \in \Sigma$ ist ein regulärer Ausdruck
- Wenn α_1 und α_2 reguläre Ausdrücke sind, dann auch $\alpha_1\alpha_2$
- \bullet Wenn α_1 und α_2 reguläre Ausdrücke sind, dann auch $(\alpha_1|\alpha_2)$
- Wenn α regulärer Ausdruck ist, dann auch $(\alpha)^*$

Reguläre Ausdrücke

- Reguläre Ausdrücke sind (wie Automaten und Grammatiken) ein Formalismus zur Repräsentation von Sprachen.
- Praktische Verwendung: Regex-Bibliotheken in Programmiersprachen oder bei der Shell-Programmierung zum Suchen und Ersetzen von Zeichenketten (verwenden meist erweiterte reguläre Ausdrücke)
- Aufbau regulärer Ausdrücke:
 Basisausdrücke und Operatoren zum Zusammensetzen

D. Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

2/3

Reguläre Ausdrücke (3)

Erzeugte Sprache

Die von einem regulären Ausdruck α erzeugte Sprache $L(\alpha)$ ist induktiv über dessen Struktur definiert:

$$\begin{split} L(\emptyset) &:= \emptyset \\ L(\varepsilon) &:= \{\varepsilon\} \\ L(a) &:= \{a\} \quad \text{für } a \in \Sigma \\ L(\alpha_1 \alpha_2) &:= L(\alpha_1) L(\alpha_2) = \{uv \mid u \in L(\alpha_1), v \in L(\alpha_2)\} \\ L(\alpha_1 \mid \alpha_2) &:= L(\alpha_1) \cup L(\alpha_2) \\ L((\alpha)^*) &:= L(\alpha)^* \end{split}$$

Für alle regulären Ausdrücke $\alpha_1, \alpha_2, \alpha_3$ gilt:

$$L((\alpha_1|\alpha_2)|\alpha_3) = L(\alpha_1|(\alpha_2|\alpha_3))$$

Daher lassen wir Klammern weg und schreiben $(\alpha_1 | \alpha_2 | \dots | \alpha_n)$.

Quiz 1

Welches Konstrukt ist eigentlich überflüssig, da es durch andere dargestellt werden kann?

- **1** $(\alpha)^*$
- $(\alpha_1 \mid \alpha_2)$
- $\mathbf{0}$ $\alpha_1\alpha_2$

arsnova.hs-rm.de 6750 1376

Beachte...

 $\emptyset^* = ?$

Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Beispiele

- $(a|b)^*aa(a|b)^*$ erzeugt alle Wörter über $\{a,b\}$, die ?zwei aufeinanderfolgende a's enthalten
- $(\varepsilon|((a|b|c)^*a(a|b|c)(a|b|c)(a|b|c)))$ erzeugt alle Wörter über $\{a,b,c\}$, die ?an viertletzter Stelle ein a haben und das leere Wort
- ((0|1|2|3|4|5|6|7|8|9)|1(0|1|2|3|4|5|6|7|8|9)|(2(0|1|2|3))): ((0|1|2|3|4|5)(0|1|2|3|4|5|6|7|8|9))erzeugt ?alle Uhrzeiten im 24-Stunden-Format
- Eine endliche Sprache $S = \{w_1, \dots, w_n\}$ wird durch $?(w_1| \dots | w_n)$ erzeugt.

Quiz 2

Welcher reguläre Ausdruck erzeugt die Sprache

$${u \in {a,b}^* \mid |u| = 4}?$$

- $(ab)^*(ab)^*(ab)^*(ab)^*$
- **2** (a|b)(a|b)(a|b)(a|b)
- **③** (*aaaa*|*bbbb*)
- \bigcirc (ab|ab|ab|ab)
- (aa|ab|ba|bb)(aa|ab|ba|bb)

arsnova.hs-rm.de 6750 1376

Quiz 3

Geben Sie einen regulären Ausdruck an, der die Sprache

$$\{u \in \{a, b\}^* \mid |u| \ge 4\}$$

erzeugt.

arsnova.hs-rm.de 6750 1376

Quiz 4

Geben Sie einen regulären Ausdruck an, der die Sprache

$$\{u \in \{a, b\}^* \mid |u| \le 4\}$$

erzeugt.

arsnova.hs-rm.de 6750 1376

Komplement von regulären Ausdrücken

- Allgemein: Es gibt keinen "Komplementoperator" für reguläre Ausdrücke.
- ullet Harte Methode: Regulärer Ausdruck o NFA o DFA o NFA für das Komplement \rightarrow DFA \rightarrow regulärer Ausdruck
- Einfachere Methode:
- **1.Schritt:** Regulärer Ausdruck \rightarrow einfache Beschreibung der erzeugten Sprache
- **2.Schritt:** → einfache Beschreibung des Komplements
- **3.Schritt:** → regulärer Ausdruck

Aufgabe (Schritt für Schritt)

Ziel: Finde regulären Ausdruck für das Komplement, der von 0*10* erzeugten Sprache

Quiz 5 Hochschule RheinMain arsnova.hs-rm.de

Welche Sprache wird von 0*10* erzeugt?

6750 1376

Quiz 6

Was ist das Komplement der Sprache aller Wörter über $\{0,1\},$ die genau eine 1 enhalten.

arsnova.hs-rm.de 6750 1376

Quiz 7

Geben Sie einen regulären Ausdruck an, der alle Wörter über $\{0,1\}$ erzeugt, die keine Einsen enthalten.

arsnova.hs-rm.de 6750 1376

Quiz 8

Geben Sie einen regulären Ausdruck an, der alle Wörter über $\{0,1\}$ erzeugt, die mindestens 2 Einsen enthalten.

arsnova.hs-rm.de 6750 1376

Ziel: Finde regulären Ausdruck für das Komplement, der von 0*10* erzeugten Sprache

Regulärer Ausdruck für das Komplement von 0*10*: 0*|(0|1)*1(0|1)*1(0|1)*

Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Satz von Kleene

Theorem 3.6.4 (Satz von Kleene)

Reguläre Ausdrücke erzeugen genau die regulären Sprachen.

Beweis in zwei Teilen:

- Jede von einem regulären Ausdruck erzeugte Sprache ist regulär.
- Für jede reguläre Sprache gibt es einen regulären Ausdruck, der sie erzeugt.

Beispiel: grep

- \$ grep -E " d(er|ie|as) neue" faust.txt Nein, er gefällt mir nicht, der neue Burgemeister! Allein der neue Trieb erwacht. Da seh' ich auch die neue Wohnung, Noch blendet ihn der neue Tag.
- \$ grep -E "(der|die|das) Q[a-z]*" faust.txt Von dem der Quell sich ewig sprudelnd stürzt, Vom ganzen Praß die Quintessenz.
- \$ grep -E "(()*Gretchen[[:punct:]]*){2,}" faust.txt Gretchen! Gretchen!

Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Beweis: Satz von Kleene (1)

- 1. Jede von einem regulären Ausdruck erzeugte Sprache ist regulär. Beweis:
 - ullet Wir konstruieren für regulären Ausdruck lpha einen NFA M_lpha mit arepsilon-Übergängen und eindeutigen Start- und Endzuständen, sodass $L(M_{\alpha}) = L(\alpha)$.
 - ullet Induktion über die Struktur von lpha
 - Basisfälle:

ullet Für $\alpha=a\in\Sigma$ konstruiere ullet• Für $\alpha = \varepsilon$ konstruiere \rightarrow • Für $\alpha = \emptyset$ konstruiere \longrightarrow

In allen Fällen ist $L(\alpha) = L(M_{\alpha})$ offensichtlich

Beweis: Satz von Kleene (2)

ullet Induktionsschritt: Betrachte den Aufbau von lpha (3 Fälle)

 \bullet Für $\alpha=\alpha_1\alpha_2$, liefert die I.H. $M_{\alpha_1},M_{\alpha_2}.$

Konstruiere daraus M_{α} :

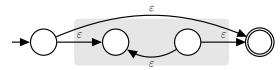
2. Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

21/20

Beweis: Satz von Kleene (4)

ullet Für $lpha=(lpha_1)^*$ liefert die I.H. M_{lpha_1}

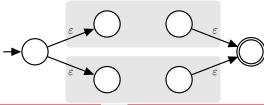
Konstruiere daraus M_{α} :



Beweis: Satz von Kleene (3)

ullet Für $lpha=(lpha_1|lpha_2)$ liefert die I.H. M_{lpha_1},M_{lpha_2} :

Konstruiere daraus M_{α} :



D. Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

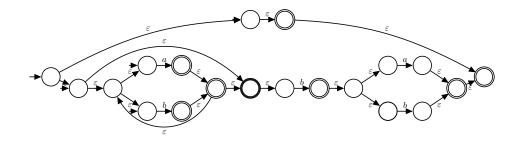
22/20

Beispiel: Regulärer Ausdruck ightarrow NFA mit arepsilon-Übergängen

NFA zum regulären Ausdruck

 $(\varepsilon|(a|b)^*b(a|b))$

konstruieren:



Beweis: Satz von Kleene (5)

2. Für jede reg. Sprache L gibt es einen regulären Ausdruck α mit $L(\alpha) = L$ Beweis:

- Sei DFA $M = (\{z_1, \ldots, z_n\}, \Sigma, \delta, z_1, E)$ mit L(M) = L gegeben.
- Für $w \in \Sigma^*$ und z_i, z_i mit $\widehat{\delta}(z_i, w) = z_i$ sei $visit_i(w) = q_1, \dots, q_m$ die Folge der besuchten Zustände (wobei $q_1 = z_i$ und $q_m = z_i$).
- Wir definieren:

$$L_{i,j}^k = \left\{ \left. w \in \Sigma^* \; \middle| \; \begin{array}{l} \widehat{\delta}(z_i, w) = z_j \; \text{und} \; visit_i(w) = q_1, \ldots, q_m, \\ \text{sodass für } 1 < l < m \text{: wenn} \; q_l = z_p \; \text{dann} \; p \leq k \end{array} \right\}$$

 $L^k_{i,j}$ enthält die Wörter, die M von Zustand z_i zu Zustand z_j führen ohne dabei Zwischenzustände mit Index größer als k zu benutzen.

• Mit Induktion über k zeigen wir:

Es gibt reguläre Ausdrücke
$$\alpha_{i,j}^k$$
 mit $L(\alpha_{i,j}^k) = L_{i,j}^k$

AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Beweis: Satz von Kleene (7)

Zur Erinnerung: $L_{i,j}^k$ enthält die Wörter, die M von Zustand z_i zu Zustand z_j führen ohne dabei

Induktionsschritt: $k \rightarrow k+1$

$$L_{i,j}^{k+1} = L_{i,j}^k \cup L_{i,k+1}^k (L_{k+1,k+1}^k)^* L_{k+1,j}^k,$$

denn entweder läuft M ohne Zustand z_{k+1} zu besuchen, oder der Lauf kann in 3 Teile gespalten werden:

- Lauf von z_i bis zum ersten Besuch des Zustands z_{k+1} (abgedeckt durch $L_{i,k+1}^k$)
- 2 Mehrmaliges, zyklisches Besuchen von k+1 (beliebig oft) (abgedeckt durch L_{k+1}^k)
- **1** Letztmaliges Verlassen von z_{k+1} und Lauf bis zu z_i (abgedeckt durch L_{k+1}^k)

$$\text{ Daher gilt } \alpha_{i,j}^{k+1} = (\alpha_{i,j}^k | \alpha_{i,k+1}^k (\alpha_{k+1,k+1}^k)^* \alpha_{k+1,j}^k) \text{ und } L(\alpha_{i,j}^{k+1}) = L_{i,j}^{k+1}.$$

Beweis: Satz von Kleene (6)

Zur Erinnerung: $L_{i,j}^k$ enthält die Wörter, die M von Zustand z_i zu Zustand z_j führen ohne dabei Zwischenzustände mit Index größer als k zu benutzen

Basis: k = 0

- Wenn $i \neq j$, dann ist $L_{i,i}^0 = \{a \in \Sigma \mid \delta(z_i, a) = z_i\}$. Falls $L_{i,j}^0 = \{a_1, \dots, a_q\}$, dann gilt $L(\alpha_{i,j}^0) = L_{i,j}^0$ für $\alpha_{i,j}^0 = (a_1 | \dots | a_q)$. Falls $L_{i,i}^0 = \emptyset$, dann gilt $L(\alpha_{i,i}^0) = L_{i,i}^0$ mit $\alpha_{i,i}^0 = \emptyset$.
- Wenn i = j, dann ist $L_{i,i}^0 = \{\varepsilon\} \cup \{a \in \Sigma \mid \delta(z_i, a) = z_i\}$. Sei $L_{i,i}^0 = \{\varepsilon, a_1, \dots, a_a\}.$ Dann gilt $L(\alpha_{i,i}^0) = L_{i,i}^0$ für $\alpha_{i,i}^0 = (\varepsilon |a_1| \dots |a_q|)$.

AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Beweis: Satz von Kleene (8)

Zur Erinnerung: $L_{i,j}^k$ enthält die Wörter, die M von Zustand z_i zu Zustand z_j führen ohne dabei Zwischenzustände mit Index größer als k zu benutzen.

Damit haben wir bewiesen:

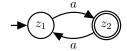
Es gibt reguläre Ausdrücke $\alpha_{i,j}^k$ mit $L(\alpha_{i,j}^k) = L_{i,j}^k$

Jetzt müssen wir noch zeigen, dass es einen regulären Ausdruck gibt, der L(M) erzeugt.

Sei die Menge der Endzustände $E = \{z_{i_1}, \dots, z_{i_n}\}.$

$$\text{Dann gilt }L(\alpha_{1,i_1}^n|\alpha_{1,i_2}^n|\dots|\alpha_{1,i_r}^n)=\bigcup_{z_i\in E}L_{1,i}^n=L(M)$$

Beispiel: DFA \rightarrow regulärer Ausdruck



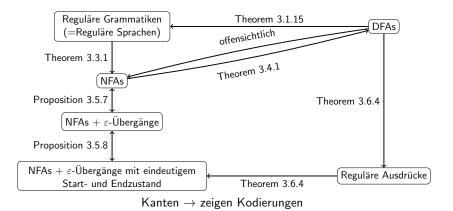
Regulärer Ausdruck dazu:

$$\begin{split} \alpha_{1,2}^2 &= (\alpha_{1,2}^1 | \alpha_{1,2}^1 (\alpha_{2,2}^1)^* \alpha_{2,2}^1) \\ &= ((a|\varepsilon(\varepsilon)^* a) \, | \, (a|\varepsilon(\varepsilon)^* a) \, (\varepsilon|a(\varepsilon)^* a)^* \, (\varepsilon|a(\varepsilon)^* a)) \\ &= (a|a(aa)^*) \, \text{(durch Vereinfachung)} \end{split}$$

denn

$$\begin{split} \alpha_{1,1}^0 &= \varepsilon \qquad \alpha_{2,2}^0 = \varepsilon \qquad \alpha_{1,2}^0 = a \qquad \alpha_{2,1}^0 = a \\ \alpha_{1,2}^1 &= (\alpha_{1,2}^0 | \alpha_{1,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (a | \varepsilon(\varepsilon)^* a) \\ \alpha_{2,2}^1 &= (\alpha_{2,2}^0 | \alpha_{2,1}^0 (\alpha_{1,1}^0)^* \alpha_{1,2}^0) = (\varepsilon | a(\varepsilon)^* a) \end{split}$$

Zusammenfassung: Formalismen für reguläre Sprachen Hochschule RheinMain



Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025

Sabel | AFS – 04 Reguläre Sprachen: Reguläre Ausdrücke | SoSe 2025