

Automatentheorie und Formale Sprachen

für die Studiengänge

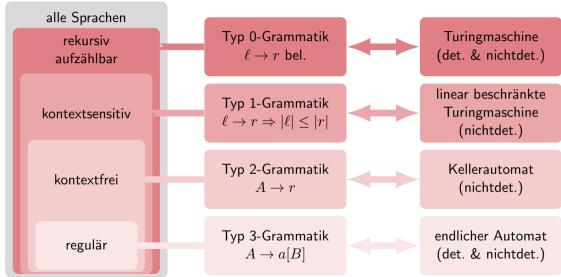
- Angewandte Informatik
- Informatik Technische Systeme

07 Kellerautomaten

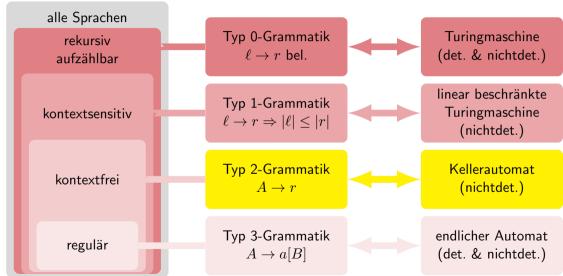
Prof. Dr. David Sabel Sommersemester 2025

Stand der Folien: 18. Juni 2025

Grammatiken & Maschine für die Chomsky-Hierarchie



Grammatiken & Maschine für die Chomsky-Hierarchie



Kellerautomaten: Motivation

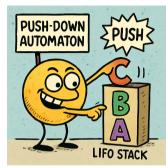
- Endliche Automaten (DFA & NFA) haben fast keinen Speicher
- Einziger Speicher dort sind die Zustände, daher endlicher Speicher
- Daher z.B. unmöglich $\{w\$\overline{w} \mid w \in \{a,b,c\}^*\}$ zu erkennen:

Man müsste beim Lesen von w alle gelesenen Zeichen speichern, um sie dann beim Lesen von \overline{w} zu vergleichen.

Kellerautomaten: Fügen einen beliebig großen Speicher hinzu

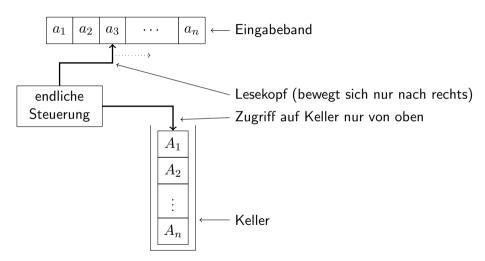
Kellerspeicher

- Kellerautomaten haben Kellerspeicher
 (Stack, LIFO-Speicher, last-in-first-out-Speicher)
- Unendlich großer Speicher als Stapel, auf den nur von oben zugegriffen werden kann.
- Zustandsübergang:



	Endlicher Automat	Kellerautomat
Eingabe	Zustand und Zeichen oder $arepsilon$	Zustand, Zeichen oder ε und oberstes
		Symbol im Keller
Ausgabe	nächster Zustand	nächster Zustand und Sequenz von
		Kellersymbolen, die das erste Symbol
		ersetzen

Kellerautomat: Illustration



Kellerautomaten: Definition

Definition (Kellerautomat, PDA)

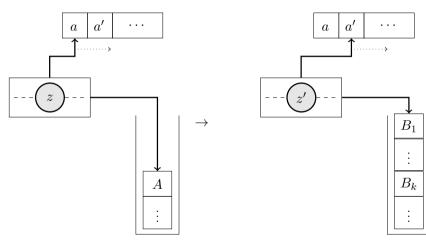
Ein (nichtdeterministischer) Kellerautomat (PDA, pushdown automaton) ist ein Tupel $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$, wobei

- Z ist eine endliche Menge von Zuständen,
- \bullet Σ ist das (endliche) Eingabealphabet,
- \bullet Γ ist das (endliche) Kelleralphabet,
- $\delta: (Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma) \to \mathcal{P}_e(Z \times \Gamma^*)$ ist die Zustandsüberführungsfunktion,
- $z_0 \in Z$ ist der Startzustand und
- \bullet # $\in \Gamma$ ist das Startsymbol im Keller.

 $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ bedeutet: im Zustand z bei Eingabe a und A oben auf dem Keller darf der PDA in Zustand z' wechseln:

Dabei wird A durch $B_1 \cdots B_k$ ersetzt (B_1 liegt oben; k = 0 ist erlaubt)

Illustration: Zustandsübergang



$$(z', B_1 \cdots B_k) \in \delta(z, a, A)$$

Bemerkungen

Mit unserer Definition von PDAs:

- PDAs sind nichtdeterministisch
- ullet PDAs erlauben arepsilon-Übergänge
- PDAs haben keine Endzustände!

Wir werden sehen:

- Akzeptieren: Wenn Eingabe verarbeitet und Keller leer
- Am Anfang: Keller enthält #

Konfigurationen

- Buchführen während einer Berechnung mit dem PDA: akueller Zustand, Resteingabe, aktueller Kellerinhalt
- Wird dargestellt durch PDA-Konfiguration

Definition (Konfiguration eines Kellerautomaten)

Sei $M = (Z, \Sigma, \Gamma, \delta, z_0, \#)$ ein PDA.

Eine Konfiguration von M ist ein Tripel (z, w, W)

mit $z \in Z$, $w \in \Sigma^*$, $W \in \Gamma^*$.

Die Menge aller Konfigurationen für M ist daher $Z \times \Sigma^* \times \Gamma^*$.

- z ist der aktuelle Zustand
- \bullet w ist die Resteingabe
- W ist der Kellerinhalt

Quiz 1 zur Wiederholung

Eine Konfiguration eines Kellerautomaten ist ein Tupel (z,w,W).

Was sind z, w und W?

Bringe die Antworten in die richtige Reihenfolge.

arsnova.hs-rm.de 6750 1376

Transitionsrelation

Definition (Transitionsrelation \vdash_M für PDA-Konfigurationen)

Für einen PDA $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ definieren wir

$$\vdash_M \subseteq (Z \times \Sigma^* \times \Gamma^*) \times (Z \times \Sigma^* \times \Gamma^*)$$

durch:

- $(z, a_1 \cdots a_n, A_1 \cdots A_m) \vdash_M (z', a_2 \cdots a_n, WA_2 \cdots A_m)$ falls $(z', W) \in \delta(z, a_1, A_1)$ und
- $(z, w, A_1 \cdots A_m) \vdash_M (z', w, WA_2 \cdots A_m)$ falls $(z', W) \in \delta(z, \varepsilon, A_1)$.

Weitere Notation:

- $\bullet \vdash_M^* = \text{reflexiv-transitive H\"ulle von } \vdash_M$
- ullet $\vdash_M^i = i$ -fache Anwendung von \vdash_M
- Wenn M eindeutig: \vdash statt \vdash_M

Quiz 2 zur Wiederholung

Sei $(q,BCD) \in \delta(z,a,A)$ ein Übergang eines PDAs.. Dann gilt für die Transitionsrelation $(z,aw,AW) \vdash ???$ Was ist für ??? einzusetzen?

arsnova.hs-rm.de 6750 1376

Quiz 3 zur Wiederholung

Sei $(q,BCD) \in \delta(z,\varepsilon,A)$ ein Übergang eines PDAs. Dann gilt für die Transitionsrelation $??? \vdash ???$

arsnova.hs-rm.de 6750 1376

PDA: Akzeptierte Sprache

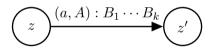
Definition (Akzeptierte Sprache eines PDA)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ ein PDA. Die durch M akzeptierte Sprache L(M) ist definiert als

$$L(M) := \{ w \in \Sigma^* \mid (z_0, w, \#) \vdash^* (z, \varepsilon, \varepsilon) \text{ für ein } z \in Z \}.$$

Notation als Zustandsgraph

- Darstellung analog zu DFA / NFA
- Für $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ zeichnen wir



• Beachte, dass das Startsymbol im Keller bekannt sein muss (üblicherweise #)

Beispiel

PDA $M = (\{z_0, z_1\}, \{a, b\}, \{B, \#\}, \delta, z_0, \#)$ mit

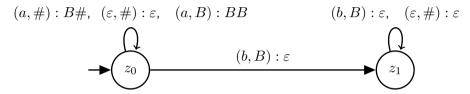
$$\begin{array}{ll} \delta(z_0,a,\#) = \{(z_0,B\#)\} & \delta(z_0,b,B) = \{(z_1,\varepsilon)\} & \delta(z_1,\varepsilon,\#) = \{(z_1,\varepsilon)\} \\ \delta(z_0,a,B) = \{(z_0,BB)\} & \delta(z_1,b,B) = \{(z_1,\varepsilon)\} & \delta(z_0,\varepsilon,\#) = \{(z_0,\varepsilon)\} \end{array}$$

und $\delta(z_i, c, A) = \emptyset$ in allen anderen Fällen

Zustandsgraph dazu:

$$(a,\#):B\#, \quad (\varepsilon,\#):\varepsilon, \quad (a,B):BB \qquad \qquad (b,B):\varepsilon, \quad (\varepsilon,\#):\varepsilon$$

Beispiel (2)



- M akzeptiert ε , denn $(z_0, \varepsilon, \#) \vdash (z_0, \varepsilon, \varepsilon)$.
- ullet M akzeptiert das Wort a^ib^i für i>0, da

$$(z_0, a^i b^i, \#) \vdash (z_0, a^{i-1} b^i, B \#) \vdash^* (z_0, b^i, B^i \#) \vdash (z_1, b^{i-1}, B^{i-1} \#) \vdash^* (z_1, \varepsilon, \#) \vdash (z_1, \varepsilon, \varepsilon)$$

- andere Wörter werden nicht akzeptiert:
 - ullet für jedes gelesene a, gibt es B im Keller, das durch Lesen von b abgebaut werden muss
 - Verbleiben mit a in z_0 , Wechsel mit b in z_1 : Dort können nur b's gelesen werden.
- $L(M) = \{a^i b^i \mid i \in \mathbb{N}_0\}$

Weiteres Beispiel

Sei
$$M = (\{z_0, z_1\}, \{a, b\}, \{A, B, \#\}, \delta, z_0, \#)$$
 mit

$$\begin{array}{lll} \delta(z_0,a,\#) = \{(z_0,A\#),(z_1,\#)\} & \delta(z_0,\varepsilon,A) = \{(z_1,A)\} \\ \delta(z_0,b,\#) = \{(z_0,B\#),(z_1,\#)\} & \delta(z_0,\varepsilon,B) = \{(z_1,B)\} \\ \delta(z_0,a,A) = \{(z_0,AA),(z_1,A)\} & \delta(z_0,\varepsilon,\#) = \{(z_1,\#)\} \\ \delta(z_0,b,A) = \{(z_0,BA),(z_1,A)\} & \delta(z_1,a,A) = \{(z_1,\varepsilon)\} \\ \delta(z_0,a,B) = \{(z_0,AB),(z_1,B)\} & \delta(z_1,b,B) = \{(z_1,\varepsilon)\} \\ \delta(z_1,\varepsilon,\#) = \{(z_1,\varepsilon)\} \end{array}$$

und $\delta(z_i, c, C) = \emptyset$ für alle anderen Fälle.

$$(a, \#) : A \#, \quad (b, \#) : B \#, (a, A) : AA, \quad (b, A) : BA, (a, B) : AB, \quad (b, B) : BB (a, \#) : \#, \quad (b, \#) : \#, \quad (a, A) : A, (a, B) : B, \quad (b, A) : A, \quad (b, A) : B, (c, A) : A, \quad (c, B) : B, \quad (\#, c) : \#$$

Weiteres Beispiel (2)

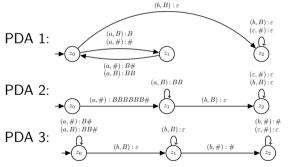

```
(a, \#) : A\#, \quad (b, \#) : B\#, 
 (a, A) : AA, \quad (b, A) : BA, 
 (a, B) : AB, \quad (b, B) : BB 
 (a, \#) : \#, \quad (b, \#) : \#, \quad (a, A) : A, 
 (a, B) : B, \quad (b, A) : A, \quad (b, B) : B, 
 (c, A) : A, , (c, B) : B, (c, \#) : # 
 (z_1) 
 (a, A) : c, (b, B) : c, (b, B) : c, (c, \#) : c, (c, \#) : c, (c, \#) : c, (c, \#) : d
```

$L(M) = \{w \in \{a, b\}^* \mid w \text{ ist Palindrom}\}:$

- In z_0 werden die gelesenen Zeichen (als A, B) auf den Keller gelegt
- In z_1 werden sie dann wieder abgearbeitet (durch Lesen von a, b)
- Wechsel von z_0 zu z_1 mit einem Zeichen (für Palindrome $ua\overline{u}$, $ub\overline{u}$) oder mit ε (für Palindrome $u\overline{u}$).
- Richtiger Zeitpunkt des Wechsels: Macht der Nichtdeterminismus.

Quiz 4

Sortieren Sie die Sprachen, entsprechend der Reihenfolge der folgenden Kellerautomaten, sodass die i-te Sprache vom i-ten Kellerautomaten erkannt wird.



1. $\{a^nb^{5+n} \mid n>0\}$ 2. $\{a^nb^m \mid n>0\}$ 3. $\{a^{2n}b^n \mid n>0\}$

arsnova.hs-rm.de 6750 1376

Akzeptanz durch Endzustände

Definition (PDA mit Endzuständen)

Ein (nichtdeterministischer) Kellerautomat **mit Endzuständen** (PDA mit Endzuständen) ist ein Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \#, E)$ wobei

- Z ist eine endliche Menge von Zuständen,
- \bullet Σ ist das (endliche) Eingabealphabet,
- \bullet Γ ist das (endliche) Kelleralphabet
- $\delta: Z \times ((\Sigma \cup \{\varepsilon\}) \times \Gamma) \to \mathcal{P}_e(Z \times \Gamma^*)$ ist die Überführungsfunktion
- $z_0 \in Z$ ist der Startzustand,
- ullet # $\in \Gamma$ ist das Startsymbol im Keller und
- $E \subseteq Z$ ist die Menge der Endzustände.

Ein PDA mit Endzuständen akzeptiert die Sprache

$$L(M) = \{ w \in \Sigma^* \mid (z_0, w, \#) \vdash^* (z, \varepsilon, W) \text{ und } z \in E \}.$$

Äquivalenz: Akzeptanz durch Endzustände / leeren Keller

Lemma

Für jeden Kellerautomat mit Endzuständen M kann ein Kellerautomat M' (ohne Endzustände) konstruiert werden, so dass L(M)=L(M') gilt

Skizze: Neuer Zustand zum Leeren des Kellers und neues Kellersymbol, um in den neuen Zustand zu wechseln.

Lemma

Für jeden Kellerautomat M kann ein Kellerautomat mit Endzuständen M' konstruiert werden, so dass L(M)=L(M') gilt.

Skizze: Neuer Endzustand und neues Kellersymbol zum Wechseln in den Endzustand

Satz

PDAs mit Endzuständen und PDAs ohne Endzustände (mit Akzeptanz durch leeren Keller) sind äguivalente Formalismen.

ÄQUIVALENZ VON KELLERAUTOMATEN UND KONTEXTFREIEN SPRACHEN

Äquivalenz: PDAs und CFLs

Ziel:

Theorem

Kellerautomaten erkennen genau die kontextfreien Sprachen.

Äquivalenz: PDAs und CFLs

- Wir zeigen, dass PDAs genau die Typ 2-Sprachen erkennen.
- Beweis in zwei Teilen:
 - Monstruktion eines PDA aus CFG in Greibach-Normalform
 - Monstruktion einer CFG aus einem PDA

(sogenannte Tripelkonstruktion)

(PDA mit Einschränkung: max. 2 Kellersymbole pro Schritt erzeugen)

$CFG \rightarrow PDA$

Ideen:

- CFG in Greibach-Normalform gegeben
- ullet PDA simuliert Linksableitung $S \Rightarrow w$
- Da CFG in Greibach-Normalform, sieht eine Linksableitung nach *i*-Schritten immer so aus:

$$S \Rightarrow^i a_1 \cdots a_i B_1 \cdots B_i$$

- ullet Start mit Eingabe w und S auf dem Keller
- Nach i Schritten, ist $a_1 \cdots a_i$ verarbeitet und $B_1 \cdots B_j$ auf dem Keller

$CFG \rightarrow PDA$ (2)

Satz

Jede kontextfreie Sprache wird durch einen Kellerautomaten erkannt.

Beweis:

- Sei L eine CFL und $G = (V, \Sigma, P, S)$ mit $L(G) = L \setminus \{\varepsilon\}$ in Greibach-Normalform.
- Sei $M=(\{z_0\},\Sigma,V,\delta,z_0,S)$ ein PDA, sodass

$$\delta(z_0, a, A) := \{ (z_0, B_1 \cdots B_n) \mid (A \to aB_1 \cdots B_n) \in P \}$$

und falls $\varepsilon \in L$ setze zusätzlich $\delta(z_0, \varepsilon, S) := \{(z_0, \varepsilon)\}.$ In allen anderen Fällen sei $\delta(z_0, \varepsilon, A) = \emptyset.$

- Wir zeigen L(M) = L.
- Zunächst: $\varepsilon \in L$ g.d.w. $(z_0, \varepsilon, S) \vdash (z_0, \varepsilon, \varepsilon)$ und damit $\varepsilon \in L(M)$.

$CFG \rightarrow PDA$ (3)

$$M = (\{z_0\}, \Sigma, V, \delta, z_0, S) \text{ mit } \delta(z_0, a, A) := \{(z_0, B_1 \cdots B_n) \mid (A \to aB_1 \cdots B_n) \in P\} \dots$$

Beweis (Fortsetzung):

• Für die weiteren Fälle zeigen wir für alle $i \in \mathbb{N}_0$ (mit Induktion über i) $S \Rightarrow_C^i a_1 \cdots a_i B_1 \cdots B_m$ mit einer Linksableitung genau dann, wenn

$$(z_0,a_1\cdots a_iw,S)\vdash^i (z_0,w,B_1\cdots B_m)$$
 für alle $w\in \Sigma^*.$

- Basis i=0: gilt, denn $S\Rightarrow^0_G S$ und $(z_0,w,S)\vdash^0 (z_0,w,S)$
- Für i > 0 und " \Rightarrow ":
- Sei $S \Rightarrow_G^i a_1 \cdots a_i B_1 \cdots B_m$ eine Linksableitung.
- Da G in Greibach-Normalform, kann diese geschrieben werden als $S\Rightarrow_G^{i-1}a_1\cdots a_{i-1}B_xB_{j+1}\cdots B_m\Rightarrow_Ga_1\cdots a_iB_1\cdots B_m$, wobei $B_x\to a_iB_1\cdots B_j\in P$ als letzte Produktion angewendet wurde.
- Induktionsannahme liefert: $S \Rightarrow_G^{i-1} a_1 \cdots a_{i-1} B_x B_{j+1} \cdots B_m$ genau dann, wenn $(z_0, a_1 \cdots a_{i-1} w, S) \vdash^{i-1} (z_0, w, B_x B_{j+1} \cdots B_k)$.
- Mit $w = a_i w'$, $(z_0, B_1 \cdots B_j) \in \delta(z_0, a_i, B_x)$, gilt $(z_0, a_1 \cdots a_i w', S) \vdash^i (z_0, w', B_1 \cdots B_k)$ für alle w'.

$CFG \rightarrow PDA (4)$

$$M = (\{z_0\}, \Sigma, V, \delta, z_0, S) \text{ mit } \delta(z_0, a, A) := \{(z_0, B_1 \cdots B_n) \mid (A \to aB_1 \cdots B_n) \in P\} \dots$$

Beweis (Fortsetzung):

- Für i > 0 und " \Leftarrow ":
- Sei $(z_0, a_1 \cdots a_i w, S) \vdash^i (z_0, w, B_1 \cdots B_k)$.
- Dann muss der letzte Schritt a_i gelesen haben
- D.h. die Folge lässt sich zerlegen in

$$(z_0, a_1 \cdots a_i w, S) \vdash^{i-1} (z_0, a_i w, B_x B_{j+1} \cdots B_k) \vdash (z_0, w, B_1 \cdots B_k),$$

wobei $(z_0, B_1 \cdots B_j) \in \delta(z_0, a_i, B_x)$.

- Dann muss $B_x \to a_i B_1 \cdots B_j$ eine Produktion in P sein.
- Induktionsannahme liefert: $S \Rightarrow_G^{i-1} a_1 \cdots a_{i-1} B_x B_{j+1} \cdots B_k$ und wir können obige Produktion anwenden und erhalten $S \Rightarrow_G^i a_1 \cdots a_i B_1 \cdots B_k$.

Hilfssatz für PDA → CFG-Beweis

Lemma (PDAs mit Erzeugung von ≤ 2 Kellersymbolen)

Für jeden PDA $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ gibt es einen PDA $M'=(Z,\Sigma,\Gamma',\delta',z_0,\#)$ mit L(M)=L(M'), sodass gilt: Wenn $(z',B_1\cdots B_k)\in\delta'(z,a,A)$ (für $a\in(\Sigma\cup\{\varepsilon\})$), dann ist $k\leq 2$.

Beweis (Skizze):

Transformiere M in M' wie folgt (mit $A \in \Gamma$ und $a \in (\Sigma \cup \{\varepsilon\})$):

- $(z', B_1 \cdots B_k) \in \delta'(z, a, A)$, wenn $(z', B_1 \cdots B_k) \in \delta(z, a, A)$, $k \leq 2$.
- falls $(z', B_1 \cdots B_k) \in \delta(z, a, A)$ mit k > 2, dann
 - $(z, C_k B_k) \in \delta'(z, a, A)$, und
 - $\delta(z, \varepsilon, C_i) = \{(z, C_{i-1}B_{i-1})\}$ für alle i mit $4 \le i \le k$, und
 - $\delta(z, \varepsilon, C_3) = \{(z', B_1 B_2)\}$

wobei $C_3, \ldots, C_k \in \Gamma'$ neue Kellersymbole sind (diese werden jeweils neu erzeugt pro ersetztem Eintrag).

$PDA \rightarrow CFG$

Ideen

- Verwende PDA mit Erzeugung von ≤ 2 Kellersymbolen
- Erzeuge Grammatik mit Tripelkonstruktion
- Variablen der Grammatik:

Tripel $\langle z', A, z \rangle$, die alle Wörter w erzeugt, die den PDA

- ullet von z' mit Kellerinhalt A und Wort w
- zu z und leeren Keller führen
- Produktionen

$$\begin{split} \langle z',A,z\rangle &\to a, & \text{wenn} & \underbrace{z'} \underbrace{(a,A):\varepsilon} \\ \langle z',A,z\rangle &\to a\langle z'',B,z\rangle, & \text{wenn} & \underbrace{z'} \underbrace{(a,A):B} \underbrace{z''} \\ \langle z',A,z\rangle &\to a\langle z'',B,z_1\rangle\langle z_1,C,z\rangle, & \text{wenn} & \underbrace{z'} \underbrace{(a,A):BC} \underbrace{z''} \end{split}$$

$PDA \rightarrow CFG$ (2)

Satz

Kellerautomaten akzeptieren kontextfreie Sprachen.

Beweis: Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ ein PDA mit $k\leq 2$ für alle $(z',B_1\cdots B_k)\in\delta(z,a,A)$ (und $a\in(\Sigma\cup\{\varepsilon\})$).

Konstruiere $G=(V,\Sigma,P,S)$ mit S neues Symbol und

$$\begin{split} V &= \{S\} \cup \{\langle z_i, A, z_j \rangle \mid z_i, z_j \in Z, A \in \Gamma\} \\ P &= \{S \rightarrow \langle z_0, \#, z \rangle \mid z \in Z\} \\ &\cup \{\langle z', A, z \rangle \rightarrow a \qquad \qquad | (z, \varepsilon) \in \delta(z', a, A), a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\} \\ &\cup \{\langle z', A, z \rangle \rightarrow a \langle z'', B, z \rangle \qquad | (z'', B) \in \delta(z', a, A), z \in Z, a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\} \\ &\cup \{\langle z', A, z \rangle \rightarrow a \langle z'', B, z_1 \rangle \langle z_1, C, z \rangle \quad | (z'', BC) \in \delta(z', a, A), z, z_1 \in Z, a \in \Sigma \cup \{\varepsilon\}, A \in \Gamma\} \end{split}$$

Wir beweisen $\langle z', A, z \rangle \Rightarrow_G^* w \text{ g.d.w.}(z', w, A) \vdash_M^* (z, \varepsilon, \varepsilon).$

Da $S \to \langle z_0, A, z \rangle$ folgt: $w \in L(G) \iff w \in L(M)$, d. h. L(G) = L(M).

$PDA \rightarrow CFG$ (3)

"⇒":

- Sei $\langle z', A, z \rangle \Rightarrow_C^i w$ eine Linksableitung.
- Wir verwenden Induktion über i.
- Basis i = 1: Sei $\langle z', A, z \rangle \Rightarrow_G w$
 - Verwendete Produktion muss $\langle z', A, z \rangle \to a$ sein
 - Dann muss $(z, \varepsilon) \in \delta(z', a, A)$ gelten und damit gilt: $(z', a, A) \vdash (z, \varepsilon, \varepsilon)$.
- Schritt: $\langle z', A, z \rangle \Rightarrow_G u \Rightarrow_G^{i-1} w$. mit i-1>0
 - Wenn $u = a \in (\Sigma \cup \{\varepsilon\})$, dann kann i 1 > 0 nicht gelten.
 - Wenn $u = a\langle z'', B, z \rangle$, dann $(z'', B) \in \delta(z', a, A)$ und $u = a\langle z'', B, z \rangle \Rightarrow^{i-1} aw' = w$. Dann gilt $\langle z'', B, z \rangle \Rightarrow^{i-1} w'$ und die Induktionsannahme liefert $(z'', w', B) \vdash_M^* (z, \varepsilon, \varepsilon)$. Mit $(z'', B) \in \delta(z', a, A)$ zeigt dies $(z', w, A) = (z', aw', A) \vdash_M (z'', w', B) \vdash_M^* (z, \varepsilon, \varepsilon)$.

$PDA \rightarrow CFG (4)$

Wenn $u = a\langle z'', B, z_1 \rangle \langle z_1, C, z \rangle$, dann ist $(z'', BC) \in \delta(z', a, A)$ und $u = a\langle z'', B, z_1 \rangle \langle z_1, C, z \rangle \Rightarrow^{i-1} aw' = w$

Dann gilt auch $\langle z'', B, z_1 \rangle \langle z_1, C, z \rangle \Rightarrow^{i-1} w'$ und es gibt Linksableitungen $\langle z'', B, z_1 \rangle \Rightarrow^j w'_0$ und $\langle z_1, C, z \rangle \Rightarrow^k w'_1$ mit $j + l \leq i - 1$, $w' = w'_0 w'_1$.

Für beide können wir die Induktionsannahme anwenden und erhalten $(z'',w'_0,B)\vdash_M^*(z_1,\varepsilon,\varepsilon)$ und $(z_1,w'_1,C)\vdash_M^*(z,\varepsilon,\varepsilon)$.

Abändern der 1. Konfigurationsfolge: C auf den Keller & w_1' anhängen $(z'',w',BC)=(z'',w_0'w_1',BC)\vdash_M^*(z_1,w_1',C)$.

Anhängen der 2. Konfigurationsfolge liefert: $(z'', w', BC) \vdash_M^* (z, \varepsilon, \varepsilon)$.

Da
$$(z'',BC) \in \delta(z',a,A)$$
, gilt

$$(z', w, A) = (z', aw', A) \vdash_M (z'', w', BC) \vdash_M^* (z, \varepsilon, \varepsilon).$$

$PDA \rightarrow CFG (5)$

"⇐":

- Sei $(z', w, A) \vdash_M^i (z, \varepsilon, \varepsilon)$. Zeige $\langle z', A, z \rangle \Rightarrow_G^* w$ mit Induktion über i
- Basis i=1: Dann gilt $w=a\in (\Sigma\cup\{\varepsilon\})$ und $(z,\varepsilon)\in \delta(z',w,A)$. Damit gibt es $\langle z',A,z\rangle\to a\in P$ und daher $\langle z',A,z\rangle\Rightarrow_G a$.
- Schritt: Sei i>1 und daher $(z',aw',A)\vdash (z'',w',\alpha)\vdash_M^{i-1}(z,\varepsilon,\varepsilon)$ für i-1>0, $a\in\Sigma\cup\{\varepsilon\}$ und $\alpha=\varepsilon$, $\alpha=B$ oder $\alpha=BC$.

Wir betrachten alle drei Fälle für α einzeln:

- $\alpha = \varepsilon$: Dieser Fall ist nicht möglich, da i-1>0 nicht gelten kann.
- $\alpha = B$. Dann ist $\langle z', A, z \rangle \to a \langle z'', B, z \rangle \in P$. Da $(z'', w', B) \vdash_M^{i-1} (z, \varepsilon, \varepsilon)$, liefert Induktionsannahme $\langle z'', B, z \rangle \Rightarrow_G^* w'$ und daher: $\langle z', A, z \rangle \Rightarrow_G a \langle z'', B, z \rangle \Rightarrow_G^* a w' = w$.

$PDA \rightarrow CFG (6)$

. .

• $\alpha = BC$. Dann ist $\langle z', A, z \rangle \to a \langle z'', B, z_1 \rangle \langle z_1, C, z \rangle \in P$.

Schreibe
$$(z'',w',BC)\vdash_M^{i-1}(z,\varepsilon,\varepsilon)$$
 als $(z'',w_1'w_2',BC)\vdash_M^{j}(z_1,w_2',C)\vdash_M^{k}(z,\varepsilon,\varepsilon)$ mit $j+k=i-1$.

Weglassen von C und w_2' im ersten Teil zeigt:

$$(z'', w'_1, B) \vdash_M^j (z_1, \varepsilon, \varepsilon),$$

Da j < i und k < i liefert Induktionsannahme $\langle z'', B, z_1 \rangle \Rightarrow_C^* w_1'$ und $\langle z_1, C, z \rangle \Rightarrow_C^* w_2'$.

Daher gilt

$$\langle z', A, z \rangle \Rightarrow_G a \langle z'', B, z_1 \rangle \langle z_1, C, z \rangle \Rightarrow_G^* a w_1' \langle z_1, C, z \rangle \Rightarrow_G^* a w_1' w_2' = w.$$

Geschafft...

Die gezeigten Sätze zusammengefasst ergeben:

Theorem

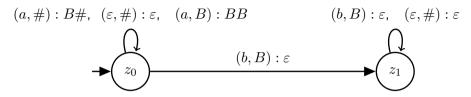
Kellerautomaten erkennen genau die kontextfreien Sprachen.

Bemerkung

Die bisherigen Beweise zeigen auch, dass man PDAs einschränken kann auf PDAs mit genau einem Zustand:

- Sei M ein PDA.
- Transformiere M in Grammatik G mit L(G) = L(M)
- ullet Transformiere G in G' in Greibach-Normalform (mit $L(G')=L(G)\setminus arepsilon$)
- Transformiere Grammatik G' in PDA M' mit L(M') = L(G) unsere Konstruktion verwendet nur einen Zustand!

Beispiel



Der vorherige Beweis konstruiert die Grammatik $G=(V,\Sigma,P,S)$ mit

$$V = \{S, \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle, \langle z_1, B, z_0 \rangle, \langle z_1, B, z_1 \rangle, \\ \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_1 \rangle, \langle z_1, \#, z_0 \rangle, \langle z_1, \#, z_1 \rangle\}$$

$$P = \{S \to \langle z_0, \#, z_0 \rangle, S \to \langle z_0, \#, z_1 \rangle.\}$$

$$\cup \{\langle z_0, B, z_1 \rangle \to b, \langle z_1, B, z_1 \rangle \to b, \langle z_0, \#, z_0 \rangle \to \varepsilon, \langle z_1, \#, z_1 \rangle \to \varepsilon\}$$

$$\cup \{\langle z_0, \#, z_0 \rangle \to a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_0 \rangle, \langle z_0, \#, z_0 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_0 \rangle$$

$$\langle z_0, \#, z_1 \rangle \to a \langle z_0, B, z_0 \rangle \langle z_0, \#, z_1 \rangle, \langle z_0, \#, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle\}$$

$$\cup \{\langle z_0, B, z_0 \rangle \to a \langle z_0, B, z_0 \rangle \langle z_0, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle, \langle z_0, B, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

$$\langle z_0, B, z_0 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, B, z_0 \rangle, \langle z_0, B, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle\}$$

Vereinfachen der Grammatik ergibt:

$$\begin{cases} S \to \langle z_0, \#, z_0 \rangle, S \to \langle z_0, \#, z_1 \rangle, \langle z_0, B, z_1 \rangle \to b, \langle z_1, B, z_1 \rangle \to b, \\ \langle z_0, \#, z_0 \rangle \to \varepsilon, \langle z_1, \#, z_1 \rangle \to \varepsilon, \\ \langle z_0, \#, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, \#, z_1 \rangle, \langle z_0, B, z_1 \rangle \to a \langle z_0, B, z_1 \rangle \langle z_1, B, z_1 \rangle \end{cases}$$

Umbenennen, Streichen von nicht erreichbaren Variablen und Entfernen von Einheitsproduktionen ergibt

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

(ist bis auf ε -Produktion in Greibach-Normalform.)

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S)$$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S)$$

 $\vdash (z_0, aabbb, B)$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S)$$

 $\vdash (z_0, aabbb, B)$
 $\vdash (z_0, abbb, BC)$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S)$$

 $\vdash (z_0, aabbb, B)$
 $\vdash (z_0, abbb, BC)$
 $\vdash (z_0, bbb, BCC)$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S) \\ \vdash (z_0, aabbb, B) \\ \vdash (z_0, abbb, BC) \\ \vdash (z_0, bbb, BCC) \\ \vdash (z_0, bb, CC)$$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M=(\{z_0\},\Sigma,V,\delta,z_0,S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S) \\ \vdash (z_0, aabbb, B) \\ \vdash (z_0, abbb, BC) \\ \vdash (z_0, bbb, BCC) \\ \vdash (z_0, bb, CC) \\ \vdash (z_0, b, C)$$

Der vorherige Beweis konstruiert für

$$G = (\{S, B, C\}, \{a, b\}, \{S \rightarrow \varepsilon \mid aB, B \rightarrow b \mid aBC, C \rightarrow b\}, S)$$

den PDA
$$M = (\{z_0\}, \Sigma, V, \delta, z_0, S)$$
 mit

$$\begin{array}{ll} \delta(z_0,a,S) = \{(z_0,B)\} & \delta(z_0,b,B) = \{(z_0,\varepsilon)\} & \delta(z_0,a,B) = \{(z_0,BC)\} \\ \delta(z_0,b,C) = \{(z_0,\varepsilon)\} & \delta(z_0,\varepsilon,S) = \{(z_0,\varepsilon)\} & \delta(z_0,d,A) = \emptyset \text{ sonst} \end{array}$$

$$(z_0, aaabbb, S) \\ \vdash (z_0, aabbb, B) \\ \vdash (z_0, abbb, BC) \\ \vdash (z_0, bbb, BCC) \\ \vdash (z_0, bb, CC) \\ \vdash (z_0, b, C) \\ \vdash (z_0, \varepsilon, \varepsilon)$$

DETERMINISTISCH KONTEXTFREIE SPRACHEN

Deterministisch kontextfreie Sprachen

- Definiert durch deterministische Kellerautomaten mit Akzeptanz durch Endzustände.
- \bullet ε -Übergänge sind erlaubt, aber nur wenn es keinen anderen Übergang (mit einem Terminalzeichen und selben Kellersymbol) gibt.

Definition (Deterministischer Kellerautomat, DPDA)

Ein Kellerautomat mit Endzuständen $M=(Z,\Sigma,\Gamma,\delta,z_0,\#,E)$ ist deterministisch (ein DPDA) wenn für alle $(z,a,A)\in(Z,\Sigma,\Gamma)$ gilt:

$$|\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \le 1.$$

Die von DPDAs akzeptierten Sprachen heißen deterministisch kontextfrei.

Beispiele (1)

Satz

Die Sprache $L = \{w\$\overline{w} \mid w \in \{a,b\}^*\}$ ist deterministisch kontextfrei.

Beweis: Betrachte den DPDA

$$\begin{split} M &= (\{z_0, z_1, z_2\}, \{a, b, \$\}, \{\#, A, B\}, \delta, z_0, \#, \{z_2\}) \text{ mit} \\ \delta(z_0, a, \#) &= \{(z_0, A\#)\} \quad \delta(z_0, \$, A) = \{(z_1, A)\} \\ \delta(z_0, b, \#) &= \{(z_0, B\#)\} \quad \delta(z_0, \$, B) = \{(z_1, B)\} \\ \delta(z_0, a, A) &= \{(z_0, AA)\} \quad \delta(z_0, \$, \#) = \{(z_1, \#)\} \\ \delta(z_0, b, A) &= \{(z_0, BA)\} \quad \delta(z_1, a, A) = \{(z_1, \varepsilon)\} \\ \delta(z_0, a, B) &= \{(z_0, AB)\} \quad \delta(z_1, b, B) = \{(z_1, \varepsilon)\} \\ \delta(z_0, b, B) &= \{(z_0, BB)\} \quad \delta(z_1, \varepsilon, \#) = \{(z_2, \varepsilon)\} \end{split}$$

und $\delta(z_i, c, C) = \emptyset$ sonst

Beachte: $L = \{w\overline{w} \mid w \in \{a,b\}^*\}$ ist nicht deterministisch kontextfrei aber kontextfrei

Beispiele (2)

Satz

Die Sprache $L = \{a^i b^i \mid i \in \mathbb{N}\}$ ist deterministisch kontextfrei.

Beweis: Betrachte den DPDA

$$\begin{split} M &= (\{z_0, z_1, z_2\}, \{a, b\}, \{\#, A\}, \delta, z_0, \#, \{z_2\}) \text{ mit} \\ \delta(z_0, a, \#) &= \{(z_0, A\#)\} \\ \delta(z_0, a, A) &= \{(z_0, AA)\} \\ \delta(z_0, b, A) &= \{(z_1, \varepsilon)\} \\ \delta(z_1, b, A) &= \{(z_1, \varepsilon)\} \\ \delta(z_1, \varepsilon, \#) &= \{(z_2, \varepsilon)\} \end{split}$$

und $\delta(z_i, c, B) = \emptyset$, sonst

Eigenschaften deterministisch kontextfreier Sprachen

Theorem

- Das Wortproblem für deterministisch kontextfreie Sprachen kann in Linearzeit entschieden werden.
- Für deterministisch kontextfreie Sprachen gibt es eindeutige Grammatiken.
- Deterministisch kontextfreie Sprachen sind unter Komplementbildung abgeschlossen.

Beweis: siehe Literatur

Weitere Eigenschaften

Satz

Determ. kontextfreie Sprachen sind nicht abgeschlossen bez. Vereinigung und Schnitt.

Beweis: i) Schnittbildung:

- Die Sprachen $L_1=\{a^nb^nc^m\mid n,m\in\mathbb{N}\}$ und $L_2=\{a^nb^mc^m\mid n,m\in\mathbb{N}\}$ sind deterministisch kontextfrei
- $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ ist nicht kontextfrei.
- ii) Vereinigung:
 - $L \cap L' = \overline{\overline{L} \cup \overline{L'}}$
 - Annahme: Det. CFLs abgeschlossen bez. Vereinigung
 - Da det. CFLs auch abgeschlossen bez. Komplement, folgt: Det. CLFs abgeschlossen bez. Schnitt. Widerspruch!
 - D.h. Annahme falsch, det. CFLs nicht abgeschlossen bez. ∪.

Entscheidbarkeitsfragen für CFLs

- CYK-Algorithmus zeigt: Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.
- Viele Fragestellungen sind für CFLs unentscheidbar (z.B. das Äquivalenzproblem und das Schnittproblem)

Satz

Das Leerheitsproblem für kontextfreie Grammatiken ist entscheidbar.

Satz

Das Endlichkeitsproblem für kontextfreie Sprachen ist entscheidbar.