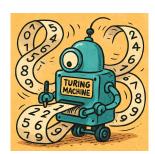


Erinnerung: Typ 1- und Typ 0-Sprachen

- Typ 1: $|\ell| \leq |r|$ für alle Produktionen $\ell \to r$
- Typ 1-Grammatik = kontextsensitive Grammatik
- aber (im Gegensatz zu Typ 2): $\ell \in (\Sigma \cup V)^+$
- Typ 0: alles erlaubt
- In manchen Büchern werden unsere Typ 1-Grammatik auch monotone Grammatiken genannt
- In manchen Büchern wird für kontextsensitive Grammatiken gefordert: Produktionen von der Form $\alpha_1 A \alpha_2 \to \alpha_1 \alpha_3 \alpha_2$ mit $\alpha_3 \neq \varepsilon$
- Nun: Maschinenmodell, das zu Typ 1 und zu Typ 0 passt: Turingmaschinen (für Typ 1: mit Einschränkungen).



Motivation für Turingmaschinen

Einschränkungen der Kellerautomaten

- PDAs erkennen genau die CFLs, daher müssen Automaten für Typ 1- und Typ 0-Sprachen "mehr können"
- Wesentliche Beschränkung bei PDAs:
 Zugriff auf Speicher nur von oben möglich
- ullet Z.B. kann man $\{a^ib^ic^i\mid i\in\mathbb{N}\}$ nicht mit PDA erkennen, da man die Anzahl i
 - ... beim Lesen der a's im Keller speichert;
 - \bullet ... beim Lesen der b's vergleichen muss und das geht nur durch sukzessives Entnehmen aus dem Keller;
 - beim Lesen der c's nicht mehr hat!

Mit beliebigem Lesen des Speichers wäre es kein Problem, $a^ib^ic^i$ zu erkennen.

Turingmaschine: Illustration

 a_2

endliche

Steuerung

Formale Definition der Turingmaschine

Definition (Turingmaschine)

Eine Turingmaschine (TM) ist ein 7-Tupel $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ mit

- ullet Z ist eine endliche Menge von Zuständen,
- \bullet Σ ist das (endliche) Eingabealphabet,
- $\Gamma \supset \Sigma$ ist das (endliche) Bandalphabet,
- ullet δ ist die Zustandsüberführungsfunktion
- deterministische TM (DTM): $\delta: Z \times \Gamma \to Z \times \Gamma \times \{L, R, N\},$
- ullet nichtdeterministische TM (NTM): $\delta: Z \times \Gamma \to \mathcal{P}(Z \times \Gamma \times \{L, R, N\})$
- $z_0 \in Z$ ist der Startzustand,
- $\bullet \ \square \in \Gamma \setminus \Sigma \text{ ist das Blank-Symbol}$
- ullet $E\subseteq Z$ ist die Menge der Endzustände.

. Sabel | AFS - 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

5/31

Band mit Feldern

Schreib-Lesekopf

möglich)

(nach links und rechts unbeschränkt)

(Bewegung nach links/rechts

Ms LBAs

O. Sabel | AFS - 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

6/31

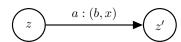
TMe IDA

Notation als Zustandsgraph

Zustandswechsel, informell

Falls die TM im Zustand z ist und das z

- Darstellung analog zu DFA / NFA / PDA
- Für $(z', b, x) \in \delta(z, a)$ zeichnen wir



DTM: Ein Eintrag $\delta(z, a) = (z', b, x)$ bedeutet:

Falls die TM im Zustand z ist und das Zeichen a an der aktuellen Position des Schreib-Lesekopfs ist, dann

- Wechsle in Zustand z'
- ullet Ersetze a durch b auf dem Band
- ullet Falls x=L: Verschiebe den Schreib-Lesekopf ein Position nach links
- Falls x = R: Verschiebe den Schreib-Lesekopf ein Position nach rechts
- Falls x = N: Lasse Schreib-Lesekopf unverändert (Neutral)

NTM: $\delta(z,a)$ ist eine Menge solcher möglichen Schritte und die NTM macht in einem Lauf irgendeinen davon (nichtdeterministisch)

Konfigurationen

Definition (Konfiguration einer Turingmaschine)

Eine Konfiguration einer Turingmaschine ist ein Wort $k \in \Gamma^* Z \Gamma^*$

D.h. eine Konfiguration ist ein Wort wzw', sodass:

- die TM ist im Zustand z,
- auf dem Band steht $\cdots \Box \Box ww' \Box \Box \cdots$ und
- ullet der Schreib-Lesekopf steht auf dem ersten Symbol von w'

Definition (Startkonfiguration einer TM)

Für ein Eingabewort w ist die Startkonfiguration einer TM $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ das Wort z_0w .

Im Spezialfall $w = \varepsilon$ ist die Startkonfiguration $z_0 \square$

D.h. am Anfang steht der Kopf auf dem ersten Symbol der Eingabe.

D. Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

9/31

TMe IRA

Quiz 2

Sie abcabcqc die Konfiguration einer Turingmaschine mit Zustandsmenge $\{z,q\}$.

Welches Symbol ist unter dem Schreib-/Lesekopf der Turingmaschine?

- $\mathsf{A} \ a$
- B^{b}
- C Das Blank-Symbol
- D c

arsnova.hs-rm.de 6750 1376

Quiz 1

Sei aaabbb der Bandinhalt und der Schreib-Lesekopf der Turingmaschine steht auf dem ersten b von links. Die Turingmaschine ist in Zustand q.

Welches Wort beschreibt diese Konfiguration?

arsnova.hs-rm.de 6750 1376

Transitionsrelation einer TM

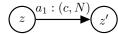
Definition (Transitionsrelation für Konfigurationen einer TM)

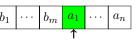
Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ eine TM. Die Relation \vdash_M ist definiert durch (wobei $\delta(z,a)=(z',c,x)$ für eine NTM $(z',c,x)\in\delta(z,a)$ meint):

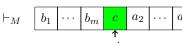
- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m z' c a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, N), m \ge 0, n \ge 1, z \notin E$
- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_{m-1} z' b_m c a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, L), m > 1, n > 1, z \notin E$
- $b_1 \cdots b_m z a_1 \cdots a_n \vdash_M b_1 \cdots b_m c z' a_2 \cdots a_n$, wenn $\delta(z, a_1) = (z', c, R), \ m \ge 0, n \ge 2, z \not\in E$
- $b_1 \cdots b_m z a_1 \vdash_M b_1 \cdots b_m c z' \square$, wenn $\delta(z, a_1) = (z', c, R)$ und $m \ge 0, z \notin E$
- $za_1\cdots a_n\vdash_M z'\Box ca_2\cdots a_n$, wenn $\delta(z,a_1)=(z',c,L)$ und $n\geq 1, z\not\in E$

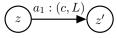
Illustrationen dazu

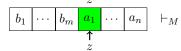
Hochschule RheinMai

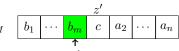




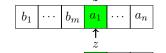


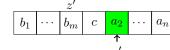


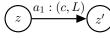


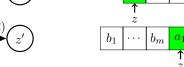


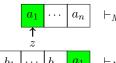


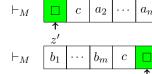












. Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 202

13/31

TMs IRAs

Transitionsrelation einer TM (2)

Weitere Notation dazu:

- \vdash_M^i : die *i*-fache Anwendung von \vdash_M
- ullet \vdash_M^* die reflexiv-transitive Hülle von \vdash_M
- Wenn M klar ist, schreiben wir nur \vdash , \vdash^i , bzw. \vdash^* .

Bemerkung:

Wir nehmen an, dass die TM anhält, sobald sie einen Endzustand erreicht.

(Schöning-Buch erlaubt weiterrechnen)

D. Sabel | AFS - 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

14/31

Akzeptierte Sprache einer TM

Definition (Akzeptierte Sprache einer TM)

Sei $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,E)$ eine TM.

Die von M akzeptierte Sprache L(M) ist definiert als

$$L(M) := \{ w \in \Sigma^* \mid \exists u, v \in \Gamma^*, z \in E : z_0 w \vdash_M^* uzv \}$$

Triviale Beispiele:

- Für Turingmaschinen der Form $M=(Z,\Sigma,\Gamma,\delta,z_0,\Box,E)$ mit $z_0\in E$ gilt $L(M)=\Sigma^*$, denn diese Turingmaschinen akzeptieren jede Eingabe sofort.
- Für Turingmaschinen der Form $M=(Z,\Sigma,\Gamma,\delta,z_0,\square,\emptyset)$ gilt $L(M)=\emptyset$, denn sie akzeptieren nie.

Online-Simulator: turingmachinesimulator.com

- Eigene Syntax, z.B. <,-,> statt L,N,R. Übergänge als 2 Zeilen: z.B. $\delta(q0,a)=(q1,b,R)$ wird eingegeben als q0,a q1,b,>
- Leicht anderes Verhalten als unsere Turingmaschinen:
 - In Endzuständen wird weiter gerechnet
 - Daher können Endzustände auch wieder verlassen werden
 - Partielle Übergangsfunktion erlaubt
- Unsere Turingmaschinen für Simulator anpassen:
 - Übergänge für Endzustände entfernen
- Deren Turingmaschinen für uns anpassen:
 - Neuen Endzustand und neuen Müllzustand anlegen
 - Deren Endzustände zu Nicht-Endzuständen manchen
 - Fehlende Übergänge von deren Endzustände in neuen Endzustand
 - Alle anderen fehlenden Übergänge in Müllzustand gehen lassen.

Beispiel (aus Schöning-Buch)

http://turingmachinesimulator.com/shared/istktezldr

TM
$$M=(\{z_0,z_1,z_2,z_3\},\{0,1\},\{0,1,\square\},\delta,z_0,\square,\{z_3\})$$
 mit

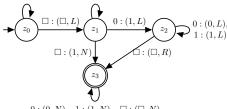
$$\delta(z_0, 0) = (z_0, 0, R)$$
 $\delta(z_0, 1) = (z_0, 1, R)$ $\delta(z_0, \square) = (z_1, \square, L)$

$$\delta(z_1,0) = (z_2,1,L)$$
 $\delta(z_1,1) = (z_1,0,L)$ $\delta(z_1,\square) = (z_3,1,N)$

$$\delta(z_2,0) = (z_2,0,L)$$
 $\delta(z_2,1) = (z_2,1,L)$ $\delta(z_2,\square) = (z_3,\square,R)$

$$\delta(z_3,0) = (z_3,0,N)$$
 $\delta(z_3,1) = (z_3,1,N)$ $\delta(z_3,\square) = (z_3,\square,N)$

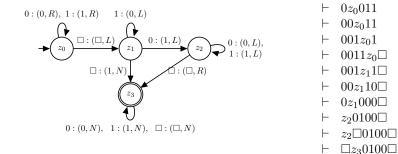
 $0:(0,R),\ 1:(1,R)$ 1:(0,L)Zustandsgraph:



 $0:(0,N), 1:(1,N), \square:(\square,N)$

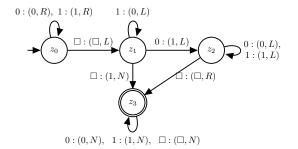
Beispiellauf

 z_00011



Quiz 3

Führen Sie den Lauf für Eingabe 10 auf folgender TM aus.

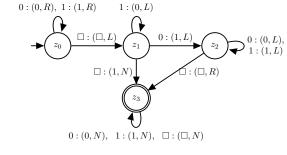


Welches Wort steht am Ende auf dem Band (ohne Blank-Symbole)?

arsnova.hs-rm.de 6750 1376

Quiz 4

Welche Sprache akzeptiert die Turingmaschine:



A $\{0,1\}^*$

C {0011, 10}

ВØ

D $L(0^*1^*0^*)$

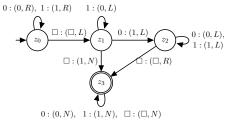
arsnova.hs-rm.de 6750 1376

Beispiel (Forts.)

Hochschule RheinMair

TM interpretiert Eingabe $w \in \{0,1\}^*$ als Binärzahl und addiert 1:

- In z_0 wird das rechte Ende gesucht, dann in z_1 gewechselt
- In z_1 wird versucht 1 zur aktuellen Ziffer hinzu zu addieren: Gelingt das ohne Übertrag, dann in z_2 Bei Übertrag: Weitermachen in z_1 und +1 zur nächsten Ziffer links
- In z_2 : bis zum Anfang links laufen, dann in z_3 .
- In z_3 wird akzeptiert.



O. Sabel | AFS - 08 Typ 1 und Typ 0 Sprachen | SoSe 202

21/3

TMs LBAs

_

LBAs: Spezielle Turingmaschinen

Ideen und Notationen:

- Linear beschränkte Turingmaschinen:
 Schreib-Lesekopf darf den Bereich der Eingabe auf dem Band nicht verlassen
- Zum Erkennen des Endes:
 Letztes Symbol der Eingabe wird markiert
- Kopie des Alphabets: Für Alphabet $\Sigma = \{a_1, \dots, a_n\}$ bezeichne $\widehat{\Sigma} = \{\widehat{a}_1, \dots, \widehat{a}_n\}$.
- ullet Eingabe bei LBAs: Statt $a_1\cdots a_m$ nun $a_1\cdots a_{m-1}\widehat{a}_m$
- TM arbeitet auf $\Sigma' = \Sigma \cup \widehat{\Sigma}$
- Linkes Ende muss die Maschine selbst markieren!

Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

22/31

Ma I DAa

LBAs: Definition

Definition (LBA)

Eine NTM $M=(Z,\Sigma\cup\widehat{\Sigma},\Gamma,\delta,z_0,\square,E)$ heißt linear beschränkt (LBA, linear bounded automaton), wenn für alle $a_1\cdots a_m\in\Sigma^+$ und alle Konfigurationen uzv mit $z_0a_1\cdots a_{m-1}\widehat{a}_m\vdash_M^* uzv$ gilt: $|uv|\leq m$.

Die akzeptierte Sprache eines LBA ${\cal M}$ ist

$$L(M) := \left\{ a_1 \cdots a_m \in \Sigma^* \middle| \begin{array}{l} z_0 a_1 \cdots a_{m-1} \widehat{a}_m \vdash_M^* uzv, \\ \text{wobei } u, v \in \Gamma^* \text{ und } z \in E \end{array} \right\}$$

Beachte: LBAs sind NTMs

Satz von Kuroda

Theorem (Satz von Kuroda)

Kontextsensitive Sprachen werden genau von den LBAs erkannt.

- Der Beweis ist im Anhang des Skripts zu finden.
- Ideen:
 - ullet LBA o Grammatik: Erzeuge Grammatik, die folgendes simuliert: Erzeuge ein beliebiges Wort aus Σ^* , und anschließend simuliere Turingmaschine auf diesem Wort. Wenn Turingmaschine akzeptiert beende Herleitung.
 - Grammatik \to LBA: Simuliere Herleitung rückwärts vom Wort zum Startsymbol: Ersetze Vorkommen von r durch linke Seite l, wenn $l \to r$ eine Produktion

Satz

Die durch (allgemeine) nichtdeterministischen Turingmaschinen akzeptierten Sprachen sind genau die Typ 0-Sprachen.

Analog, aber: Grammatik \rightarrow TM: |l| > |r| erlaubt, daher Platz nicht beschränkt.

TM vs. NTM

- Nichtdeterministische Turingmaschinen können durch deterministische Turingmaschinen simuliert werden:
 Probiere alle Berechnungsmöglichkeiten der NTM nacheinander durch
- Daher gilt der letzte Satz auch für DTM
- Unterschied zwischen NTMs und DTMs kommt erst zum Tragen, wenn wir das Laufzeitverhalten betrachten (s. Kapitel zur Komplexitätstheorie)

Überblick: Grammatiken & Automaten

Sprache	Grammatik	Automat	sonstiges
Typ 3	reguläre Grammatik	endlicher Automat (DFA und	regulärer
		NFA)	Ausdruck
deterministisch	LR(k)-Grammatik	Deterministischer Kellerautomat	
kontextfrei		(DPDA)	
Typ 2	kontextfreie Grammatik	Kellerautomat (PDA) (nichtde-	
		terministisch)	
Typ 1	kontextsensitive Grammatik	k linear beschränkte Turingmaschi-	
		ne (LBA) (nichtdeterministisch)	
Typ 0	Typ 0-Grammatik	Turingmaschine (deterministisch	
		und nichtdeterministisch)	

Beachte: LR(k)-Grammatiken wurden nicht behandelt.

0. Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

25/5

'Ms LBAs

D. Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

26/31

TMe IPAe

Trennende Beispiele

- \bullet Die Sprache $\{a^nb^n\mid n\in\mathbb{N}_0\}$ ist Typ 2 aber nicht vom Typ 3.
- Die Sprache $\{w \in \{a,b\}^* \mid w \text{ ist Palindrom}\}$ ist Typ 2 aber nicht deterministisch-kontextfrei.
- Die Sprache $\{a^nb^nc^n\mid n\in\mathbb{N}_0\}$ ist Typ 1 aber nicht vom Typ 2.
- Die Sprache

 $H = \{ M \# w \mid \text{die durch } M \text{ beschriebene} \\ \text{Turingmaschine hält bei Eingabe } w \}$

ist Typ 0 aber nicht vom Typ 1.

Anmerkung: \boldsymbol{H} ist das Halteproblem, es wird später genau betrachtet und erläutert

ullet Das Komplement von H ist nicht vom Typ 0.

Deterministisch vs. nichtdeterministisch

Deterministischer Automat	nichtdeterministischer Au-	äquivalent?
	tomat	
DFA	NFA	ja
DPDA	PDA	nein
DLBA	LBA	unbekannt
DTM	NTM	ja

Abschlusseigenschaften

Entscheidbarkeiten

Sprachklasse	Schnitt	Vereinigung	Komplement	Produkt	Kleenescher Abschluss
Тур 3	■ ✓	✓	✓	✓	✓
det.kontextfrei	×	×	✓	×	×
Typ 2	×	✓	×	✓	✓
Typ 1 Typ 0	√	✓	✓	✓	✓
Typ 0	√	✓	×	✓	✓

Sprachklasse	Wortproblem	Leerheits- problem	Äquivalenz- problem	Schnittproblem
Typ 3	ja	ja	ja	ja
det.kontextfrei	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

O. Sabel | AFS - 08 Typ 1 und Typ 0 Sprachen | SoSe 2025

29/3

TMe IRAc

D. Sabel | AFS – 08 Typ 1 und Typ 0 Sprachen | SoSe 202

30/31

Komplexität des Wortproblems

Sprachklasse	
Typ 3, DFA gegeben	lineare Komplexität
deterministisch kontextfrei	lineare Komplexität
Typ 2, Chomsky-Normalform gegeben	$O(n^3)$
Typ 1	exponentiell
Typ 0	unlösbar