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Abstract—We present AMIGO, an automatic indexer for video
presentations which – given an e-lecture and supplementary slides
– localizes the exact time and position of each slide displayed in
the video footage. This offers richer access to viewers, including
a slide-accurate navigation and a text-based interaction with the
video. AMIGO is based on a matching of local features between
video frames and presentation slides. Our key contribution,
however, is the combination of local feature matching with two
temporal models (a Hidden Markov Model (HMM) and a simple
heuristic filter), exploiting the alignment of the presentation with
the reading order of its supplementary material. We demonstrate
the effectiveness of our approach in quantitative experiments on
a dataset of e-lectures and screencasts, which show – with an
average accuracy of over 95% – that the approach works under
occlusion and camera motion.

I. INTRODUCTION

E-learning has become a major trend over the recent years,
and conventional knowledge transfer is increasingly enhanced
or replaced by electronically supported forms of teaching.
Learners – nowadays digital natives – are open to engaging
with new media, and can benefit from a more flexible time
management and learning speed, as well as from an individu-
alized learning process. Thereby, a key-driver of e-learning are
educational videos. These range from lecture recordings over
screencasts to professionally produced webcasts, and constitute
the core of most online courses1. A key problem with video,
however, lies in the fact that it offers only limited interaction
possibilities, and cannot easily be linked with additional ma-
terial such as presentation slides, scripts, notes, forum posts
and discussions. Learning as an interactive process, however,
requires massive interaction, such as navigation (where in the
video does Section 3 start?), fine-grain access to certain pieces
of information (where can I find the example for Newton’s
method?), storage and reorganisation (can I copy this piece
of text from the video?), or exploration (where can I find
additional material?).

Up to some extent, video can be made more accessible
by a manual annotation and/or subtitling, or by a fine-grain
segmentation into short subsegments of 1-2 minutes. This is,
however, extremely time-consuming and involves considerable
costs. Therefore, this paper addresses the automatic indexing of
educational videos as an alternative. Our approach covers both
regular screencasts and the more challenging case of lecture
recordings, even with a moving camera. It is based on a local
feature matching between the video stream and the documents
visible in it (typically, presentation slides), which localizes the

1See e.g. udacity.com, inversity.org, coursera.org,
or khanacademy.org

exact time and position of each slide/page in the video. This
offers a rich set of interactions, ranging from slide-accurate
navigation over text search in the video – or copy-and-paste
from the video – to the recommendation of add-on content.

Our key contributions are: First, we propose an automatic
indexing for lecture slides based on local feature matching, an
approach which has not been followed before to the best of
our knowledge. Second, our model includes a novel combina-
tion of feature-matching with temporal models, enforcing the
alignment of the video content with the reading order of the
supplementary material. Third, we demonstrate in quantitative
experiments that our approach is effective for webcasts as well
as lecture recordings, with an average matching accuracy of
95.05%. Errors are caused by corner cases such as multiple
slides visible at once, or strong occlusion. A web demo of the
system is available online2.

II. RELATED WORK

Interactive online courses are increasingly popular, offered
by institutions of higher education as well as dedicated web-
based portals (e.g. the Kahn Academy, Udacity, Coursera, or
video2brain). In practice, interaction with e-lectures is usually
limited to standard features like play or fast forward. Besides
the video footage, additional exercises, slides, or quizzes
are offered. Indexing of video content is usually done by a
segmentation into short subsequences, to which headlines, tags,
and subtitles are (manually) added [1].

Automatic indexing of e-lectures is conducted in research
prototypes [2], [3] and opencast systems [4]. The footage
is usually required to show a rectified, high-quality version
of the slides, as it can be captured by opencast systems
recording the VGA stream with specialized hardware during
the presentation. In this case, the VGA stream is aligned
with the audio stream, optical character recognition (OCR)
is applied, and slide transitions are detected, which allows a
frame-accurate text search. In contrast to this, our approach
is based on a local feature matching [5] between video and
documents, which offers several benefits: First, no additional
hardware is required while recording the presentation. Second,
our approach is independent of text and can also match graphic
content or imagery. Third, OCR is replaced with a more robust
localization of the whole slide, which works even in case
of perspective distortions, difficult lighting conditions, partial
occlusion, inconventional slide designs (using exotic fonts or
small text sizes) as well as poor video quality and resolution.
Text can be extracted directly from the slides (using, e.g., pdf
libraries) free from misrecognition.

2http://bolg.cs.hs-rm.de:8000/videoPlayer



From a computer vision point of view, our work is based
on local feature matching, stable homography estimation by
RANSAC like approaches as [6], and geometric constraints [7].
Thereby, we address an object recognition problem, which is
simplified by the fact that the target objects (the slides) are
planar and (usually) well-textured. Local feature matching has
been successfully used for recognition of planar objects3 and
document matching [8]. Beyond this, we integrate the noisy
results with an HMM-based model that combines the match
scores with temporal constraints, enforcing the alignment of
the recognized slides with the expected reading order.

III. APPROACH

We subsample a given e-lecture (e.g., at 1 fps), obtaining
a sequence of video frames F to be indexed. Supplementary
documents (typically presentation slides) are assumed to be
given in pdf format. Potentially, there are multiple documents
accompanying a video. We collect all pages (or slides) from
all documents in a set S = {s1, ..., sn}. To index the e-lecture
means to infer a mapping from F to S ∪ {s0}, whereas s0
indicates that no slide is visible in a given frame.

A. Keypoint Extraction, Matching, and Score Computation

Each frame to be indexed as well as the slides from the
supplementary material are rendered into images4. Next we
extract local features using SIFT [9] from each frame and
slide, and conduct a local feature matching for each slide/frame
combination by finding the most similar key point in the
frame to each one in the slide based on an approximate
nearest neighbor search5 [10] . As a result, we obtain a set of
local correspondences (or matches). We perform filtering and
reasoning on these matches to infer the correct slide for each
frame. First, as the original set of matches must be expected
to contain a substantial amount of false positives, we apply
several filters to improve match quality:

1) We apply a ratio test [9] based on the key points’
descriptors, i.e. we filter matches with d1/d2 > γ ∈
]0, 1[, where d1, d2 are the descriptor distances of the
nearest and the second nearest neighbors respectively.

2) We estimate the dominant homography [7] H map-
ping key point positions between the slide and the
frame using RANSAC [11]. Any matches whose
positions do not match H are discarded.

3) We validate H using simple geometric criteria. First,
since slides should not be flipped, H = (hij) should
be orientation-preserving, i.e. det

(
h11 h12
h21 h22

)
>

0 [12]. Otherwise we discard all matches.
4) Since slides should appear at prominent size, we map

the slide s into the frame using H and compare the
resulting area |H(s)| with the frame’s total area |f |.
If |H(s)| < β · |f |, we discard all matches.

5) As slides should roughly be of rectangular shape in
the video, we expect all internal angles of the mapped
slide H(s) to be close to 90◦ and discard all matches
containing an inner angle α with |α− 90◦| > δ.

3See www.ltutech.com/solutions/mobile-visual-search/
4Frames are rendered by OpenCV, slides by Wand (docs.wand-py.org)
5Our implementation uses FLANN (www.cs.ubc.ca/research/flann)

Based on the set of refined matches between frame f and
slide s, we estimate a score indicating the likelihood that
f does in fact display s. Intuitively, the higher the number
of matches, the higher this score, i.e. scorematches(s, f) :=
n(s, f), where n(s, f) denotes the number of matches after
refinement. This absolute count of matches, however, may not
be the best option: First, for strongly textured slides/frames, it
is intrinsically higher due to false positives. Second, as scores
will serve as input features for later reasoning steps, we expect
their distribution to be consistent across a wide range of videos,
i.e. scores should be robust to illumination, texturing, or
occlusion. As we suspect (and will validate later), this second
criterion is not met by the absolute match count. Therefore,
we suggest an additional normalization with the number of
keypoints per slide n(s) and the number of keypoints per frame
n(f), yielding

scorenorm(s, f) :=
n(s, f)

n(s)
+
n(s, f)

n(f)
. (1)

B. Hidden Markov Model

Given the score measures from Section III-A, a simple
indexing strategy might be to pick the slide with maximum
score for each frame (or no slide if all scores are below
a certain threshold). However, we still must expect errors
when following this strategy, due to clutter, redundant slide
content, or occlusion. To infer the most plausible slides for
each frame, automatic indexing should exploit both the image
match quality and the order of the slides in the supplementary
material. Thereby, a probabilistic approach seems suitable to
handle uncertainty: Sometimes the presenter may violate the
reading order (e.g. skipping slides to answer a question), and
sometimes the match quality between slide and frame may be
poor (for example in case of partial occlusion).

Fig. 1. In our approach, HMM states correspond to the presentation slides.
Transition probabilities model the likelihood of switching slides, and output
probabilites are derived from the match quality between video frame and slide.

To address these challenges, we suggest HMMs, a well-
known approach towards the recognition of sequential data
with many applications in Computer Vision [13]. HMMs
assume input data to come as a sequence of observations
o0, o1, o2, ... and infer a corresponding sequence of states
(modeled as random variables S0, S1, S2, ...). Inference is
based on the three probability distributions

• P (S0 = s), the distribution of the initial state,

• P (St+1 = st+1|St = st), the transition probability
between states, and



• P (ot|St = s), the output probabilities of observing
certain feature values, given a state.

In our case, each time step t corresponds to a new video
frame to be indexed, the corresponding state St is the slide
to estimate, and the observations ot will be derived from
the scores outlined in Section III-A. Figure 1 illustrates this
approach. Formally, we define a set of states S ′ := S ∪ {s0}
(where S contains all slides from all documents, and s0
represents situations in which no slide is visible). To model the
HMM’s output probabilities, we distinguish two cases: fit (a
slide s is visible) and fit (the slide s is not visible). We assume
annotated lectures for a supervised training to be given, from
which we can derive frame-slide pairs for both classes. We
choose one of the score computation measures from Section
III-A and derive a set of training scores, from which we
estimate the means µfit, µfit and variances σ2

fit, σ
2
fit

for both
classes using maximum likelihood estimation. Note that we
expect µfit to be substantially higher than µfit, as the number
of matches between slide and frame should increase in case
the slide is actually visible. To model the observation vector
at time t, we match the frame ft with all slides and collect
the resulting scores, i.e.

ot :=
(
score(s1, ft), score(s2, ft), ..., score(sn, ft)

)
.

We choose a multivariate normal distribution for ot, assuming
si is visible, i.e. p(ot|St = si) := N (ot;µi,Σi) with the
parameters

µi :=
(
µfit, ..., µfit, µfit

↓
µi

i

, µfit, ..., µfit

)T
,

Σi :=Diag
(
σ2
fit
, ..., σ2

fit
, σ2

fit

↓
Σii

i

, σ2
fit
, ..., σ2

fit

)
.

Corresponding to this distribution, when in state i, we expect
the scores for all slides to be low except for slide i. In case
of s0, we choose all parameters from the fit distribution, i.e.

µ0 :=
(
µfit, ..., µfit

)T
, Σ0 := Diag

(
σ2
fit
, ..., σ2

fit

)
.

We refrain from learning the HMM’s initialization and tran-
sition probabilities, as we expect them to vary between pre-
sentations (e.g. depending on the teacher’s speed or questions
from the audience). Instead, we use a simple strategy based
on manually chosen parameters: Given a small probability
ε > 0 to model “unlikely” events, we choose the initialization
distribution as

P (S0 = s) ∝

{
ps if s is the first slide of its document

1− ps if s = s0 (no slide visible)
ε else.

.

To normalize, we divide the above values by their total.
Furthermore, to account for multiple documents, we divide
all probabilities by the number of documents, i.e. we favor no
certain order of documents and do not consider their length.

To model the HMM’s transition probabilities, we assume
all slides to be watched sequentially and for an equal duration,
which leads to

p :=
n

T

Course Topic video type length (min) #pages #visible
CV SfS e-lecture 101 42 42

Analysis Motivation e-lecture 10 33 6
Analysis Newton e-lecture 22 33 7
Analysis Bisection e-lecture 21 33 10
Analysis Regula Falsi e-lecture 23 31 11
Analysis Taylor series screencast 26 13 13

TABLE I. VIDEOS USED IN THE EXPERIMENTS (203 MINUTES TOTAL).

as the probability for switching from any slide s to its
successor. Thereby, T is the number of frames to index in
the video and n denotes the overall number of slides. Based
on p, we choose the following transition probabilities:

P (St+1 = st+1|St = st) ∝
p if st+1 is st’s successor

λ · p if st+1 is st’s predecessor

ν · p if st+1 = s0 (no slide)

1− (1 + λ+ ν) · p if st+1 = st (stay on slide)

ε else (any other slide in any document)

.

assuming that st 6= s0, i.e. some slide was visible before
the transition. In case no slide was visible, we expect any
subsequent slide to be equally likely, resulting in

P (St+1 = s|St = s0) ∝
{

0.8 if s = s0
0.2
n else.

Again, we normalize the above values to sum up to one, so
we obtain a proper probability distribution.

C. State Filtering

Finally, we apply an additional postprocessing step based
on a heuristic filtering of states. To be of interest to the video’s
viewers, a slide should be visible for at least a few seconds.
Therefore, we remove short subperiods (e.g., when quickly
skipping through slides): Starting at the beginning of the video,
we check all its segments, i.e. all subperiods in which a certain
slide is visible without interruption. We sort these segments
by their length and start with the shortest one. Whenever the
duration of a segment is smaller than τ seconds, we merge
the segment with its predecessor, i.e. the slide recognized by
AMIGO is replaced with the slide that was last visible before.
Effectively, this heuristic filtering removes short subperiods.

IV. EXPERIMENTS

We evaluate our automatic indexing on a set of e-lectures
and screencasts recorded by the authors at RheinMain Uni-
versity of Applied Sciences. An overview of the data is given
in Table I. The dataset contains 203 video minutes in total
from the lecture “Shape from Shading” (SfS) from the course
“Computer Vision” (CV) and five different lectures from the
course “Analysis”. The courses were held in German, recorded
in different auditoriums, show different slide designs, and were
filmed with different cameras and from different viewpoints.
The “Computer Vision” video was recorded with a fixed
camera at resolution 840 × 480 px and displays substantial
occlusion by the lecturer. The “Analysis” videos are of res-
olution 1280 × 720 px, include camera motion, and contain
several minutes of desktop camera recordings, which display
close-ups of the presenter writing onto the slides (see Figure
2 for examples). In case a video includes manual writing,



Fig. 2. From left to right: Sample frames from our test videos, showing the
e-lectures “Computer Vision” , “Analysis”, and a screencast.

its slides were scanned after the lecture, and the scans were
used for indexing. Otherwise, the original pdfs rendered with
LATEX were used. Finally, as a proof of concept, we also include
a screencast produced for the “Analysis” course.

Accuracy Measures Indexing was conducted at 1 fps,
amounting for 12,164 frame-slide pairs to estimate in total,
which were annotated manually to assess the accuracy of
indexing. We use two different quality indicators: First, we
measure the percentage of frames for which the correct slide
(or the correct “no-slide” state s0) was recognized. We refer
to this measure as state accuracy in the following. Second,
we measure the correctness of state transitions. Thereby, a
transition occurs whenever the slide displayed in the video
changes. Given the set of true transitions T in the video and
the set recognized by AMIGO T ′, we measure the Jaccard
index J(T , T ′) := (T ∩T ′)/(T ∪T ′). Thereby, two transitions
are assumed equal if the switch recognized by AMIGO does
not deviate by more than 3 seconds from the true one.

Parameters We set the angle tolerance to δ = 10◦,
the area tolerance β (Subsection III-A) to 10%, and the ratio
test parameter γ (Subsection III-A) to 0.75. Any parameters
regarding SIFT extraction and representation were set to their
OpenCV default values. The slides to be recognized were
rescaled to fit the video resolution before matching. Matching
itself was conducted using FLANN. We set the HMM’s
parameter to model small probabilities to ε = 10−16. The start
probability of a document’s first slide was chosen as ps = 0.9,
the transition probabilities were set to λ = 1/8 (for going back
to the preceeding slide) and to ν = 1/15 (for switching to
the “no-slide” state). State filtering used a value of τ = 10
seconds.

A. Score Measures

Figure 3 illustrates the distribution of scores of frame-
slide pairs from two different lectures, using the absolute
match count scorematches(s, f) (see Section III-A) as opposed
to the normalized scores scorenorm(s, f) (see Equation (1)).
For each video, we collected fit pairs where the slide is
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Fig. 3. The distribution of “fit” scores in the different test videos, using
scorematches(s, f) (left) and scorenorm(s, f) (right).

visible in the frame, computed the resulting match scores, and
estimated the mean and variance of the scores’ distributions.
The resulting normal distributions are illustrated in the plots.
When using absolut match counts the distributions can differ
significantly between the videos. Here, the scores cannot
be considered robust when training on different videos than
testing on, and the HMM cannot be expected to generalize
well. However, when using keypoint normalization instead, the
corresponding distributions are a lot more similar. Therefore,
for the normalized match count a higher robustness can be
expected than for the absolute match counts. For that reason,
we use the normalized scores in the following experiments.

B. Recognition Results

Overall quantitative results of indexing are illustrated in Ta-
ble II. We tested three different methods (all using scorenorm):

1) Baseline: A plain feature matching, including a ratio
test and a filtering using a homography, but without
any additional homography-based validation (only
points 1 and 2 from the refinements in Section III-A).

2) Homography Validation: In addition to 1., we in-
clude the homography-based checks for orientation,
area and angle. If a frame-slide pair fails any crite-
rion, all its matches are discarded (effectively setting
its score to 0).

3) Homography Validation & HMM: In addition to the
homography validation, we refine the resulting slide
estimates using the HMM approach from Section
III-B. The HMM was trained on the “Computer
Vision” video (we will address generalization of the
model between different videos later).

4) Final: Same as the last run, but now including the
final state filtering outlined in Section III-C.

Table II shows that a plain baseline matching is inaccurate:
Mostly it produces incorrect slide transitions (the Jaccard index
is 3.82% on average) and recognizes the correct slide only in
73% of cases. Homography checks very effectively improve
the results (23.20% / 92.05%). Beyond this, our results also
demonstrate that accuracy can be improved further by includ-
ing time contraints: The HMM model results in an average
Jaccard index of 50.76% and state accuracy of 93.45%. Finally,
state filtering improves results further to 76.72% / 95.05%.
In particular, the combination of both temporal models leads
to the best results, outperforming both HMM (Table II) and
heuristic state filtering alone (71.80% / 94.35%).

Figure 4 illustrates the effects of the temporal models on a
subsection of the Regula Falsi video. The x-axis indicates time
(seconds), the y-axis the visible/recognized slide. Gray seg-
ments indicate the ground truth, red ones recognition results.
For green segments, both are well aligned, i.e. recognition
is correct. We observe that – when using no additional time
constraints – recognition tends to be unstable, leading to lots
of fragmented subperiods with many false slide transitions
(which explains the low Jaccard index, in particular). Using the
HMM and state filtering, these errors are smoothed out. The
time-based models, however, also produce a longer incorrect
segment in the beginning. The reason is redundant content, as
illustrated in Figure 5, i.e. multiple slides are visible at once.



Course Topic baseline homography validation homography validation & HMM final
jaccard index state accuracy jaccard index state accuracy jaccard index state accuracy jaccard index state accuracy

CV SfS 1.94 59.58 28.18 96.75 73.75 98.24 93.02 98.96
Analysis Bisection 2.65 66.45 26.32 91.67 45.45 92.39 64.71 96.31
Analysis Newton 4.81 71.60 16.07 93.45 45.00 95.39 60.00 96.96
Analysis Motivation 4.35 76.97 33.33 95.76 77.78 97.37 100.00 99.18
Analysis Regula Falsi 3.30 75.16 26.98 85.86 47.37 86.32 69.23 87.74
Analysis Taylor series 5.89 88.33 8.33 88.85 15.19 90.99 73.33 91.18

average 3.82 73.02 23.20 92.05 50.76 93.45 76.72 95.05

TABLE II. RESULTS (LEFT TO RIGHT): RAW MATCHING, HOMOGRAPHY-BASED VALIDATION, ADDING THE HMM, AND ADDITIONAL STATE FILTERING.
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Fig. 4. Left: Plain frame-wise matching leads to unstable recognitions. Right:
Results are stabilized by the temporal constraints of HMM and state filtering.

C. Generalization

AMIGO’s automatic indexing must generalize under a wide
range of recording conditions, recording hardware and slide
designs. These parameters might affect the HMM’s observa-
tion densities, whose means and variances are learned from
manually annotated sample videos. To validate generalization
between different recording conditions, we test AMIGO (using
the final setup, i.e. including the HMM and state filtering) on
videos from the two courses “Computer Vision” and “Analy-
sis”, and evaluate indexing accuracy when training the HMM
on the same course as the video belongs to, and on the other
course. In the latter case, state accuracy drops slightly (from
95.28% to 95.05%), while the Jaccard index (which allows a
tolerance of 3 seconds) is not affected at all.

D. Error Inspection

In an in-depth inspection of error cases we found 8 video
subsequences for which slide recognition remained error-
prone. Figure 5 illustrates the sources of error discovered:
Partial occlusion: Manually, “no slide” was annotated, but
AMIGO recognizes the partially occluded slide. Redundant
content: Multiple slides are visible simultaneously. AMIGO
picks the slide at the top, while the slide at the bottom is
actually in the limelight. Lack of texture: Animated slides
or slides written on manually may show little texture in the
beginning. Sometimes, no slide can be found in these cases.
Missing content: A slide is visible that was not provided with
the course material. A similar (but incorrect) slide from the
official course material is picked.

Fig. 5. Error cases occur due to (from left to right): partial occlusion,
redundant content, lack of texture, or missing content.

V. CONCLUSION

We have presented AMIGO, an automatic indexer for
educational video content, which localizes the exact time and
position at which presentation slides occur in video footage,
even under partial occlusion and camera motion. Our approach
is based on an image matching technique using local SIFT fea-
tures. It extends over a plain frame-wise matching by temporal
constraints, using an HMM and heuristic state filtering, which
is shown to improve the accuracy of recognition. We also
demonstrate the robustness of indexing on a set of e-lectures
and screencasts: Few errors were found, which were all caused
by corner cases such as occlusion or redundant content.

Next we will focus on exploiting indexing results for
user interaction. We plan to implement text-based interaction
(including text search, copy-paste, or filling in text that is
occluded in the video footage). Other features may include
the exploitation of speech recognition for indexing, or even
more fine-grain access (e.g. clicking on a point on a slide, and
directly navigating to the exact second where it is explained).
Finally, to eliminate the remaining misrecognitions, a user in-
terface for inspecting and refining indexing results is required.
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