
Object retrieval with large vocabularies and fast spatial matching

James Philbin1, Ondřej Chum1, Michael Isard2, Josef Sivic1 and Andrew Zisserman1

1Department of Engineering Science, University of Oxford
2Microsoft Research, Silicon Valley

{james,ondra,josef,az}@robots.ox.ac.uk misard@microsoft.com

Abstract

In this paper, we present a large-scale object retrieval

system. The user supplies a query object by selecting a

region of a query image, and the system returns a ranked

list of images that contain the same object, retrieved from

a large corpus. We demonstrate the scalability and perfor-

mance of our system on a dataset of over 1 million images

crawled from the photo-sharing site, Flickr [3], using Ox-

ford landmarks as queries.

Building an image-feature vocabulary is a major time

and performance bottleneck, due to the size of our dataset.

To address this problem we compare different scalable

methods for building a vocabulary and introduce a novel

quantization method based on randomized trees which we

show outperforms the current state-of-the-art on an exten-

sive ground-truth. Our experiments show that the quanti-

zation has a major effect on retrieval quality. To further

improve query performance, we add an efficient spatial ver-

ification stage to re-rank the results returned from our bag-

of-words model and show that this consistently improves

search quality, though by less of a margin when the visual

vocabulary is large.

We view this work as a promising step towards much

larger, “web-scale” image corpora.

1. Object retrieval from a large corpus

We are motivated by the problem of retrieving, from a

large corpus of images, the subset of images that contain a

query object.1 In practice, no algorithm will be able to make

a perfect binary determination of whether or not an image

lies in the query subset, and in fact even human judges may

disagree on this due to occlusion, distortion, etc. We there-

fore address the slightly different problem of ranking each

image in the corpus to determine the likelihood that it con-

tains the query object, and aim to return to the user some

1The query object is specified by a user selecting part of a query image,

so it is really a “query region” however we will refer to it as an object to

avoid overloading the term region.

prefix of this ranked list, in descending rank order.

A naive and inefficient solution to this task would be to

formulate a ranking function and apply it to every image in

the dataset before returning a ranked list. This is very com-

putationally expensive for large corpora and the standard

method in text retrieval [4, 8] is to use a bag of words model,

efficiently implemented as an inverted file data-structure.

This acts as an initial “filtering” step, greatly reducing the

number of documents that need to be considered.

Recent work in object based image retrieval [20, 24] has

mimicked simple text-retrieval systems using the analogy

of “visual words.” Images are scanned for “salient” regions

and a high-dimensional descriptor is computed for each re-

gion. These descriptors are then quantized or clustered into

a vocabulary of visual words, and each salient region is

mapped to the visual word closest to it under this cluster-

ing. An image is then represented as a bag of visual words,

and these are entered into an index for later querying and

retrieval. Typically, no spatial information about the image-

location of the visual words is used in the filtering stage.

Despite the analogy between “visual words” and words

in text documents, the trade-offs in ranking images and web

pages are somewhat different. An image query is generated

from an example image region and typically contains many

more words than a text query. The words are “noisier” how-

ever: in the web search case the user deliberately attempts

to choose words that are relevant to the query, whereas the

choice of words is abstracted away by the system in the

image-retrieval case, and cannot be understood or guided

by the user. Consequently, while web-search engines usu-

ally treat every query as a conjunction, object-retrieval sys-

tems typically include images that contain only, for exam-

ple, 90% of the query words, in the filtered set.

The biggest difference, however, is that the visual words

in an image-retrieval query encode vastly more spatial

structure than a text query. A user who types a three-word

text query may in general be searching for documents con-

taining those three words in any order, at any positions in

the document. A visual query however, since it is selected

from a sample image, automatically and inescapably in-

cludes visual words in a spatial configuration corresponding

to some view of the object; it is therefore reasonable to try

to make use of this spatial information when searching the

corpus for different views of the same object.

In this paper we investigate two directions for improving

visual object-retrieval performance. In both cases we are

guided by the constraint that the methods should be scalable

to extremely large image corpora.

1. Improving the visual vocabulary. As noted above,

image-based retrieval systems extract high-dimensional re-

gion descriptors from images, then cluster these to form a

vocabulary of visual words. Early systems [24] used a flat

k-means clustering that was effective but difficult to scale

to large vocabularies. More recent work has used cluster hi-

erarchies [17] and greatly increased the visual-word vocab-

ulary size [20] using them. We show in section 3 that flat

k-means can be scaled to similarly large vocabulary sizes

by the use of approximate nearest neighbor methods. As

will be demonstrated, this method has similar complexity

to the vocabulary tree, but far superior performance. For

the approximate nearest neighbors we employ a random for-

est algorithm [5, 15, 23]. This algorithm has recently been

extensively used for supervised classification [19, 25] and

unsupervised matching [21].

2. Incorporating spatial information into the ranking.

Ideally we would like to verify that the target and query im-

age regions were generated by the same object/scene region.

Correspondence issues have been well studied both in the

transformations required and in their estimation [14]. For

example, two views of a rigid object are related by epipo-

lar geometry, two views of a planar patch are related by a

homography, etc. Such mappings can be computed from

correspondences of salient regions between the target and

query images. Indeed, correspondences (to verify a match)

can even be extended to deformations [11]. In practice for

collections such as consumer photographs, it may not be

necessary to consider such general geometric transforma-

tions. This is a question that can be assessed empirically

by re-ranking on transformations of varying generality, and

to this end we investigate a set of ranking methods, all of

which can be implemented efficiently, in section 4. We find

that we are able to deal with image variations such as light-

ing, shadows and partial occlusions without explicitly mod-

eling them.

For a concrete application, we choose searching on

building facades and architectural features. This can be very

challenging because of the near ambiguities that arise from

repetitions of architectural building blocks: windows, doors

etc. We use photos from the photo-sharing site Flickr [3],

as this contains many examples of the typical building shots

that tourists capture.

Figure 1. 42 randomly sampled images from the 5K dataset. Note

that the dataset contains difficult distractors which may easily be

confused with those used in the query set.

Dataset # images # features Size of descriptors

5K 5,062 16,334,970 1.9 GB

100K 99,782 277,770,833 33.1 GB

1M 1,040,801 1,186,469,709 141.4 GB

Total 1,145,645 1,480,575,512 176.4 GB

Table 1. The number of images, features and descriptor sizes for

each dataset.

2. The Datasets, Evaluation & Implementation
Oxford 5K dataset. To evaluate performance when com-

paring different visual vocabularies and spatial rankings,

we have collected a set of images comprising 11 different

Oxford “landmarks” – by landmark here we mean a par-

ticular part of a building – together with distractors. Im-

ages for each landmark were retrieved from Flickr [3], using

queries such as “Oxford Christ Church” and “Oxford Rad-

cliffe Camera.” We also retrieved further distractor images

by seaching on “Oxford” alone. The entire dataset consists

of 5,062 high resolution (1024 × 768) images. Sample im-

ages from the dataset are shown in figure 1.

For each landmark we chose 5 different query regions, as

shown in figure 2. The five queries are used so that retrieval

performance can be averaged over any individual query pe-

culiarities.

We obtain ground truth manually by searching over the

entire dataset for the 11 landmarks. Images are assigned

one of four possible labels: (1) Good – a nice, clear picture

of the object/building. (2) OK – more than 25% of the ob-

ject is clearly visible.(3) Junk – less than 25% of the object

is visible, or there is a very high level of occlusion or dis-

tortion. (4) Absent – the object is not present. The number

of occurrences of the different landmarks range between 7

and 220 good and ok images. The dataset of images and the

R
ad

cl
if

fe
C

am
P

it
t

R
iv

er
s

M
ag

d
al

en
K

eb
le

H
er

tf
o

rd
C

o
rn

m
ar

k
et

C
h

ri
st

C
h

u
rc

h
B

o
d

le
ia

n
B

al
li

o
l

A
sh

m
o

le
an

A
ll

S
o

u
ls

Figure 2. All 55 query images used in the ground truth evaluation.

Each row shows different queries for the same scene landmark.

Note the large variation in scale of the query regions and the vari-

ation in position, lighting, etc. of the images themselves.

ground truth labelling are available at [1].

In addition to this labelled set, we use two other datasets

to stress-test retrieval performance when scaling up. These

consist of images crawled from Flickr’s list of most popu-

lar tags. The images in our datasets will not in general be

disjoint when crawled from Flickr, so we remove exact du-

plicates from the sets. We then assume that these datasets

contain no occurrences of the objects being searched for,

so they act as distractors, testing both the performance and

scalability of our system.

100K dataset. This data was crawled from Flickr’s 145

most popular tags and consists of 99,782 high resolution

(1024 × 768) images.

1M dataset. This data was crawled from Flickr’s 450 most

popular tags and consists of 1,040,801 medium resolution

(500 × 333) images.

Table 1 summarizes the relative sizes of the datasets.

2.1. Performance evaluation

To evaluate the performance we use the average pre-

cision (AP) measure computed as the area under the

precision-recall curve for a query. Precision is defined as

the ratio of retrieved positive images to the total number

retrieved. Recall is defined as the ratio of the number of

retrieved positive images to the total number of positive im-

ages in the corpus. An ideal precision-recall curve has pre-

cision 1 over all recall levels and this corresponds to an av-

erage precision of 1.

We compute an average precision score for each of the

5 queries for a landmark, averaging these to obtain a mean

Average Precision (mAP) score. The average of these mAP

scores is used as a single number to evaluate the overall

performance.

In computing the average precision, we use the Good and

Ok images as positive examples of the landmark in ques-

tion, Absent images as negative examples and Junk images

as null examples. These null examples are treated as though

they are not present in the database – our score is unaffected

whether they are returned or not.

2.2. Implementation

This section overviews our bag-of-visual-words real-

time object retrieval engine.

Image description. For each image in the dataset, we find

affine-invariant Hessian regions [18]. Typically there are

3,300 regions detected on an image of size 1024× 768. For

each of these affine regions, we compute a 128-D SIFT de-

scriptor [16]. The number of descriptors generated for each

of our datasets is shown in table 1.

A sample of the visual descriptors are quantized and then

used to index the images for the search engine. In sec-

tion 3.3 we describe the number of descriptors and words

used for quantization, but in all cases the visual vocabulary

is computed on the 5K dataset.

Search Engine. Our search engine uses the vector-space

model [7] of information-retrieval. The query and each doc-

ument in the corpus is represented as a sparse vector of term

(visual word) occurrences and search proceeds by calculat-

ing the similarity between the query vector and each doc-

ument vector, using an L2 distance. We use the standard

tf-idf weighting scheme [7], which down-weights the con-

tribution that commonly occurring, and therefore less dis-

criminative, words make to the relevance score.

For computational speed, the engine stores word occur-

rences in an index, which maps individual words to the doc-

uments in which they occur. In the worst case, the compu-

tational complexity of querying the index is linear in the

corpus size, but in practice it is close to linear in the number

of documents that match a given query, generally a major

saving. For sparse queries, this can result in a substantial

speedup, as only documents which contain words present in

the query need to be examined. The scores for each docu-

ment are accumulated so that they are identical to explicitly

computing the similarity.

With large corpora of images, memory usage becomes

a major concern. To help ameliorate this problem, the in-

verted index is stored in a space-efficient binary-packed

structure. Additionally, when main memory is exhausted,

the engine can be switched to use an inverted index flat-

tened to disk, which caches the data for the most frequently

requested words.

For example, for a vocabulary size of 1M words, our

search engine implementation can query the combined

5K+100K datasets in approximately 0.1s for a typical query

and the inverted index consumes 1GB of main memory. The

size of the index for the combination of the 5K+100K+1M

datasets is 4.3GB, larger than our available main memory,

so we use an offline version of the index flattened to disk.

Querying this corpus from disk takes around 15s – 35s for

a typical query.

3. Visual vocabularies from scalable clustering

Generating clusters for such a large quantity of data

presents challenges to traditionally used algorithms. Even

sub-sampling 5% of the 100K dataset would still require

clustering roughly 28 million 128 dimensional descriptors.

The size of the data essentially rules out methods such as

mean-shift, spectral and agglomerative clustering. Even

“simpler” clustering algorithms such as exact k-means fail

to scale to this kind of size. Some work has been done on

accelerating exact k-means [10], but this requires O(K2)
extra storage, where K is the number of cluster centers, ren-

dering it impractical for our purposes.

In this work, we compare the performance of two differ-

ent clustering methods: (a) approximate k-means, and (b)

hierarchical k-means [20]. The two methods are described

in detail below.

3.1. Approximate k­means (AKM)

The first method is an alteration to the original k-means

algorithm. In typical k-means, the vast majority of compu-

tation time is spent on calculating nearest neighbours be-

tween the points and cluster centers. We replace this exact

computation by an approximate nearest neighbor method,

and use a forest of 8 randomized k-d trees [5, 15, 23]

built over the cluster centers at the beginning of each it-

eration to increase speed. We use randomized k-d tree

code, optimized for matching SIFT descriptors, supplied by

Lowe [16]. Usually in a k-d tree, each node splits the dataset

using the dimension with the highest variance for all the

data points falling into that node and the value to split on

is found by taking the median value along that dimension

(although the mean can also be used). In the randomized

version, the splitting dimension is chosen at random from

among a set of the dimensions with highest variance and the

split value is randomly chosen using a point close to the me-

dian. The conjunction of these trees creates an overlapping

partition of the feature space and helps to mitigate quanti-

zation effects, where features which fall close to a partition

boundary are assigned to an incorrect nearest neighbour.

This robustness is especially important in high-dimensions,

where due to the “curse of dimensionality” [22], points will

be more likely to lie close to a boundary.

A new data point is assigned to the (approximately) clos-

est cluster center as follows. Initially, each tree is descended

to a leaf and the distances to the discriminating boundaries

are recorded in a single priority queue for all trees [6]. Then,

we iteratively choose the most promising branch from all

trees and keep adding unseen nodes into the priority queue.

We stop once a fixed number of tree paths have been ex-

plored. This way, we can use more trees without signifi-

cantly increasing the search time.

The algorithmic complexity of a single k-means iteration

is now reduced from O(NK) to O(N log(K)), where N is

the number of features being clustered from. Our tests have

shown that at least for moderate values of K, the percentage

of points assigned to different cluster centers differs from

the exact version by less than 1%, motivating the approach.

Note that this method has the same time and memory com-

plexity as the hierarchical vocabulary tree clustering of [20]

described below. If a scaling-up beyond reasonable mem-

ory requirements is needed, the top level branches of each

tree can be distributed to different machines.

3.2. Hierarchical k­means (HKM)

Nistér and Stewénius [20] propose generating a “vocab-

ulary tree” using a hierarchical k-means clustering scheme

(also called tree structured vector quantization [13]). On the

first level of the tree, all data points are clustered to a small

number (K = 10) of cluster centers. On the next level, k-

means (with K = 10 again) is applied within each of the

partitions independently. The result is Kn clusters at the n-

th level. For example, using a branching factor of 10 with 6

levels results in 1M leaf nodes. A new data point is assigned

by descending the tree. Instead of assigning each data point

to the single leaf node at the bottom of the tree, the points

Clustering parameters mAP

of descr. Voc. size k-means AKM

800K 10K 0.355 0.358

1M 20K 0.384 0.385

5M 50K 0.464 0.453

16.7M 1M 0.618

Table 2. Comparison of the performance of exact k-means to our

AKM method on the 5K dataset, using different numbers of train-

ing descriptors and clusters.

can additionally be assigned to some internal nodes which

their path from root to leaf passes through. This can help

mitigate the effects of quantization error, for cases when

the data point lies close to the Voronoi region boundary for

each cluster center.

It is important to note that traditional flat k-means mini-

mizes the total distortion between the data points and their

assigned, closest cluster centers, whereas the hierarchical

tree minimizes this distortion only locally at each node and

this does not in general result in a minimization of the total

distortion.

3.3. Results on comparing vocabularies

Our goal is to evaluate the retrieval performance of vi-

sual vocabularies built using the two clustering methods de-

scribed above. Here, we test only the filtering stage of the

retrieval system, i.e. retrieval is performed using only the

inverted file (including the tf-idf weighting), and no rank-

ing using the spatial configuration of regions is used. We

perform three main experiments. Firstly, we compare per-

formance using AKM to flat k-means. This is to establish

how much, if any, performance is lost by the approximation.

Secondly, we compare AKM to HKM. Thirdly, we investi-

gate how the performance using AKM degrades as we scale

up the number of images in the corpus.

k-means vs AKM. For the small 5K dataset, we compare

AKM to exact k-means, using varying amounts of sub-

sampled data and cluster centers with identical cluster ini-

tialization. These results are given in table 2, and show that

our approximate method gives very similar performance to

exact k-means, differing in mAP by less than 1% and out-

performing k-means in two cases. This justifies the use of

AKM as an effective proxy for exact k-means, but with a

fraction of the computational cost.

HKM vs AKM. We compare our method to HKM in two

ways. First, we compare performance on the Recognition

Benchmark introduced by [20]. This consists of 10,200 im-

ages split into four image groups of the same scene taken

from different viewpoints. A perfect result is to return,

given a query, the other three images from that query’s

group before images from other groups. This is expressed

as an average over the number of the top four correctly re-

turned, taken over all possible query images. We also dis-

play a graph, showing how the query performance changes

Method Scoring Average

Levels Top

HKM 1 3.16

HKM 2 3.07

HKM 3 3.29

HKM 4 3.29

AKM 3.45
0 2000 4000 6000 8000 10000

3.2

3.4

3.6

3.8

4

Subset Size

A
v
e

ra
g

e
 T

o
p

AKM = 3.45
HKM = 3.29

Table 3. A comparison of the AKM and HKM on the Recog-

nition Benchmark of [20] using the descriptors for training and

testing provided by the authors of [20]. “HKM” is the hierarchi-

cal k-means quantization, where the numbers are taken from [2].

“AKM” is the result of our approximate k-means clustering. Both

methods use a vocabulary of 1M visual words and an L1 distance.

Method Dataset mAP

Bag-of-words Spatial

(a) HKM-1 5K 0.439 0.469

(b) HKM-2 5K 0.418

(c) HKM-3 5K 0.372

(d) HKM-4 5K 0.353

(e) AKM 5K 0.618 0.647

(f) AKM 5K+100K 0.490 0.541

(g) AKM 5K+100K+1M 0.393 0.465

Table 4. Vocabulary comparison over the three datasets. For the

HKM method, the number of levels used for scoring is listed in

the method name. All methods use 1M cluster centers, generated

from all 16.7M descriptors in the 5K dataset. The “spatial” method

is described in section 4.

as increasingly large subsets of the data are searched over.

To train our clusters, we use identical training and testing

descriptors to [20] provided at [2], and an L1 distance to

compute the ranking. From table 3, we see that for the

same number of visual words, our method significantly out-

performs the hierarchical method.

Second, we have also compared the performances of the

two methods on our own 5K dataset, shown in table 4, rows

(a)–(e), using our descriptors. Here, we have used our own

implementation of HKM which we have found gives almost

identical figures on the dataset from [2]. The AKM method

clearly outperforms the best HKM method, by 0.618 to

0.439 mAP. This might be attributed to quantization effects

of the vocabulary tree – data points may be suffering from

bad initial splits close to the root of the vocabulary tree. As

a result, descriptors arising from the same object/scene re-

gion in different images can be assigned (due to e.g. noise)

to different clusters. Hierarchical scoring might partially

overcome this problem, but we find that the hierarchical

scoring actually hurts the performance of the HKM method.

However, if we switch the vector scoring to use the L1 dis-

tance (instead of L2), we find that the hierarchical scoring

improves performance, but doesn’t produce as good a result

as in the L2 case (0.427 best L1 vs. 0.439 best L2). Clearly,

more work is needed to understand the HKM performance

here.

Vocab Bag of

Size words Spatial

50K 0.473 0.599

100K 0.535 0.597

250K 0.598 0.633

500K 0.606 0.642

750K 0.609 0.630

1M 0.618 0.645

1.25M 0.602 0.625
0 2 4 6 8 10 12

x 10
5

0.45

0.5

0.55

0.6

0.65

Vocabulary Size
m

A
P

Bag of words
Spatial

Table 5. Examining the effect of vocabulary size on performance

for the 5K dataset. Each vocabulary is trained using AKM on

all 16.7M descriptors. There is a performance peak at 1 mil-

lion words. The spatial verification consistently improves perfor-

mance.

Scaling up with AKM. We explore a number of different

vocabulary sizes for the 5K dataset in table 5. This shows a

peak in performance at 1M visual words, although for large

numbers of clusters, the performance curve appears quite

flat and we predict the performance would not significantly

degrade for moderately larger vocabularies.

We evaluate the scalability of our method on the 5K,

5K+100K and 5K+100K+1M datasets in table 4, rows (e)–

(g), using the 1M words visual vocabulary. In going from

the smallest dataset to the largest, a 226-fold increase in the

number of images, the performance falls by just over 20%.

We attribute this drop in performance to a lack of sufficient

discrimination in the quantization for the larger dataset. As

will be seen, this performance loss is ameliorated to some

extent once spatial ranking is included.

4. Spatial re-ranking

The output from performing a query on the inverted file

described previously is a ranked list of images for a sig-

nificant section of the corpus. We have until now consid-

ered the features in each image as a visual bag-of-words

and have ignored the spatial configurations of features. We

now investigate re-ranking the top-ranked results using spa-

tial constraints. The spatial verification procedure estimates

a transformation between the query region and each target

image, based on how well its feature locations are predicted

by the estimated transformation. We then re-rank target im-

ages based on the discriminability of the spatially verified

visual words.

4.1. Transformations and their estimation

As is now standard in estimation algorithms on visual

data, two types of measurement error must be considered:

errors in a detected feature’s position and shape; and errors

due to outliers from mismatched or missing features, be-

cause of detector failure, occlusion, etc. The standard solu-

tion is to use the RANSAC algorithm [12]; this involves gen-

erating transformation hypotheses using a minimal num-

ber of correspondences and then evaluating each hypothesis

based on the number of “inliers” among all features under

that hypothesis.

Transformation dof Matrix

translation +

isotropic scale
3

»

a 0 tx

0 a ty

–

translation +

anisotropic scale
4

»

a 0 tx

0 b ty

–

translation +

vertical shear
5

»

a 0 tx

b c ty

–

(a)

H1

I

H2

H

C1 C2

(b)
Table 6. (a) The three affine sub-groups compared in the spatial

re-ranking. (b) Computing H as H
−1

2
H1, preserving “upness” for

the 5 dof case.

Typically, photos are taken from a restricted range of

canonical views and we can use this prior information to

speed up transformation estimation. We choose to use LO-

RANSAC [9], a variant of RANSAC. It involves generating

hypotheses of an approximate model and then iteratively re-

evaluating promising hypotheses using the full transforma-

tion. By selecting a restricted class of transformations for

the hypothesis generation stage and exploiting shape infor-

mation in the affine-invariant image regions, we are able to

generate hypotheses with only a single pair of correspond-

ing features. This greatly reduces the number of possible

hypotheses which need to be considered and significantly

speeds up the matching procedure. We therefore choose to

enumerate all such hypotheses, which removes the random-

ness from our algorithm, resulting in a deterministic proce-

dure.

We compare three affine sub-groups for hypothesis gen-

eration, with degrees of freedom ranging between 3 and 5,

that are listed in table 6(a). This is to evaluate whether or

not there is any significant performance difference between

transformation types. In each case we use a general (6 dof)

affine transformation for the iterative re-estimation step of

LO-RANSAC. The 3 dof transformation approximately cov-

ers situations such as a change in zoom or camera distance

to the scene, but not foreshortening. The 4 dof transforma-

tion approximately covers foreshortening by either a hori-

zontal or vertical scaling between views. The 5 dof trans-

formation preserves the vertical direction and allows for

anisotropic scaling and vertical shear. These three models

take advantage of the fact that images are usually displayed

on the web with the correct (upright) orientation. For this

reason, we have not allowed for in-plane image rotations.

Implementation details. The 3 dof transformation (method

(i) in the following results) is computed from a single region

correspondence using the regions’ centroids to estimate the

translation, and each region’s scale to estimate the isotropic

scale change between the query region and the target image.

For the 4 dof transformation (method (ii)) from a single

region correspondence, the scaling in the x direction is com-

puted from the ratio of the regions’ x extents (and similarly

for the y scaling).

The 5 dof transformation (method iii) is estimated from

(a)

Method / Rerank N 100 200 400 800

i 3dof 0.468 0.492 0.522 0.556

ii 4dof 0.465 0.490 0.521 0.555

iii 5dof 0.467 0.491 0.526 0.560

(b)

Method / Rerank N 100 200 400 800

i 3dof 0.644 0.650 0.652 0.655

ii 4dof 0.646 0.656 0.659 0.661

iii 5dof 0.648 0.657 0.660 0.664

Table 7. Comparing the different transformation types on the

5K dataset. (a) Using a 20K visual vocabulary (bag of words =

0.385). (b) Using a 1M visual vocabulary (bag of words = 0.618).

a single correspondence of two elliptical regions, C1 ↔ C2.

For the two regions, we consider the transforms H1 and H2

which will transform the ellipses to a unit circle (see fig-

ure 6(b)), such that the orientation of the unit vector in the

y-direction is maintained ((0, 1)⊤ is an eigenvector of the

transform). The overall transform is then given by H−1

2
H1.

The 6 dof transformation is estimated from the centroids

of the current inlier set, returned from the simpler trans-

forms.

We have tried several different error functions [14] to de-

termine inlier correspondences, including a one-way trans-

fer error (from query to target and vice-versa), a two-way

transfer error, and a two-way transfer error with a thresh-

old on the expected. We find that the two-way transfer er-

ror with scale threshold performs the best on the data. In

cases where a simpler one-way transfer error suffices, we

can speed up verification when there is a high visual-word

multiplicity between the two images (usually for smaller

vocabularies). We merely need to find the spatially clos-

est matching feature in the target to a particular query fea-

ture and check whether this single distance is less than the

threshold. This is done using a 2D k-d tree, to provide log-

arithmic time search.

In all experiments where “spatial” is specified, we have

used our spatial verification procedure to re-rank up to the

top 1000 images. We consider spatial verification to be

“successful” if we find a transformation with at least 4 inlier

correspondences. We re-rank the images by scoring them

equal to the sum of the idf values for the inlier words and

place spatially verified images above unverified ones in the

ranking. We abort the re-ranking early (after considering

fewer than 1000 images) if we process 20 images in a row

without a successful spatial verification. We find this gives

a good trade-off between speed and accuracy.

4.2. Results on comparing spatial rankings

In this section, we evaluate the performance of our spa-

tial re-ranking on the complete retrieval system for all

datasets and compare the effects of the different transfor-

mation types described above.

Tables 7(a) and (b) show the mAP after applying differ-

ent spatial ranking methods to the top 100, 200, 400 and

Figure 3. Examples of errors in retrieval for four different query

images. The query image is shown outlined in red, with two highly

ranked (top 100) false positives to the right. Some false positives

are visually plausible, but others match due to visual ambiguities

in the local regions and low numbers of matched visual words.

800 images returned by the initial filtering stage, for the

5K dataset, using a 20K vocabulary and a 1M vocabulary

respectively. As shown, spatial re-ranking significantly im-

proves the retrieval quality of the system, although the mar-

gin is less for the more discriminative vocabulary. As for

the transformation types, in general, 5 dof outperforms 4

dof, which outperforms 3 dof, but the improvement is small.

This may be because the affine re-estimation evens out the

differences in transformation type.

Table 4(e)–(g) show the results of the spatial re-ranking

on the large datasets with consistent improvements of

around 5%. This shows that even though our verification

method only sees up to the top 1000 results, it is still able to

sufficiently boost the retrieval quality.

Figure 4 shows example queries retrieved from the

5K dataset, using the complete retrieval system. The re-

sults demonstrate the considerable variations in viewpoint,

scale, lighting and partial occlusion which are present in the

corpus. Figure 3 illustrates examples of errors in retrieval.

5. Conclusions and further work

We demonstrate a scalable visual object-retrieval system

that uses a corpus of photos taken from a public web site.

The system returns photos from the corpus that contain a

query object, despite substantial differences in lighting, per-

spective, image quality and occluders between the query

and retrieved images.

We view this as a step towards the ultimate goal of build-

ing a web-scale retrieval system that will scale to billions

of images. We have therefore concentrated on algorithms

which are scalable, and which we believe are straightfor-

ward to distribute over a cluster of computers.

More evaluation is needed to determine how close we are

to a ranking function that will correctly return matching ob-

jects as the corpus size grows. However, even if the ranking

function is adequate, we believe that retrieval performance

will not scale unless we find efficient ways to include spa-

tial information in the index, and move some of the burden

of spatial matching from the ranking stage to the filtering

stage. We leave this problem as future work.

(a)

(b)

(c)

(d)

Figure 4. Examples of searching the 5K dataset for: (a) All Soul’s College. (b) Bridge of sighs, Hertford College. (c) Ashmolean Museum.

(d) Bodleian window. The query is shown on the left, with selected top ranked retrieved images shown to the right. All results displayed

are returned before the first false positive for each query.

Acknowledgements. We thank David Lowe for discussions

and for providing his k-d tree code and Henrik Stewénius

for providing his dataset for comparison. We are grateful

for support from the Royal Academy of Engineering, the

EU Visiontrain Marie-Curie network, the EPSRC and Mi-

crosoft.

References

[1] http://www.robots.ox.ac.uk/∼vgg/data/.

[2] http://www.vis.uky.edu/∼stewe/ukbench/data/.

[3] http://www.flickr.com/.

[4] Y. Aasheim, M. Lidal, and K. Risvik. Multi-tier architecture

for web search engines. In Proc. Web Congress, 2003.

[5] Y. Amit and D. Geman. Shape quantization and recognition

with randomized trees. Neural Computing, 9(7):1545–1588,

1997.

[6] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.

An optimal algorithm for approximate nearest neighbor

searching fixed dimensions. Journal of the ACM, 45(6):891–

923, 1998.

[7] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. ACM Press, ISBN: 020139829, 1999.

[8] L. Barroso, J. Dean, and U. Holzle. Web search for a planet:

The google cluster architecture. Micro, IEEE, 23, 2003.

[9] O. Chum, J. Matas, and Š. Obdržálek. Enhancing RANSAC

by generalized model optimization. In Proc. ACCV, 2004.

[10] C. Elkan. Using the triangle inequality to accelerate kmeans,

2003.

[11] V. Ferrari, T. Tuytelaars, and L. Van Gool. Simultaneous

object recognition and segmentation by image exploration.

In Proc. ECCV, 2004.

[12] M. A. Fischler and R. C. Bolles. Random sample consensus.

Comm. ACM, 24(6):381–395, 1981.

[13] A. Gersho and R. Gray. Vector quantization and signal com-

pression. Kluwer Academic Publishers, Boston, 1992.

[14] R. I. Hartley and A. Zisserman. Multiple View Geometry

in Computer Vision. Cambridge University Press, ISBN:

0521540518, second edition, 2004.

[15] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-

time keypoint recognition. In Proc. CVPR, June 2005.

[16] D. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004.

[17] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object

class detection with a generative model. In Proc. CVPR,

2006.

[18] K. Mikolajczyk and C. Schmid. Scale & affine invariant in-

terest point detectors. IJCV, 1(60):63–86, 2004.

[19] F. Moosman, B. Triggs, and F. Jurie. Randomized clustering

forests for building fast and discriminative visual vocabular-

ies. In NIPS, 2006.

[20] D. Nistér and H. Stewénius. Scalable recognition with a vo-

cabulary tree. In Proc. CVPR, 2006.

[21] Š. Obdržálek and J. Matas. Sub-linear indexing for large

scale object recognition. In Proc. BMVC., 2005.

[22] U. Shaft, J. Goldstein, and K. Beyer. Nearest neighbours

query performance. Technical report, 1998.

[23] C. Silpa-Anan and R. Hartley. Localization using an image-

map. In Proc. ACRA, 2004.

[24] J. Sivic and A. Zisserman. Video Google: A text retrieval

approach to object matching in videos. In Proc. ICCV, Oct

2003.

[25] J. Winn and A. Criminisi. Object class recognition at a

glance. In In Video Proc. CVPR, 2006.

