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Classifiers image from [3]

I Many different models exist for solving classification
problems

I We will discuss some of the most common
I Decision Trees
I Naive Bayes
I Nearest Neighbor
I Support Vector Machines
I Neural Networks
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Decision Trees in Expert Systems image from [7]
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Decision Trees: Introduction

Decision trees are claimed
to be the most popular
classifier world-wide [8]

Benefits
I flexibility (dealing with

non-numeric features and
regression problems)

I simplicity and speed

I transparency of the classifier’s decisions

Approach
I Choose a class based on simple recursive decisions (or rules)

Key Question
I Learning: How do we construct a tree structure / rule set

based on a (labeled) training set?
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Hello World: Classifying Water Animals [6]

sample must come to surface? color has flippers? class

1 yes gray yes fish
2 yes blue yes fish
3 yes blue no non-fish
4 no green yes non-fish
5 no gray yes non-fish
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Decision Tree Learning: Basics

I General Approach: recursive
construction of tree using
a greedy strategy

I Each node in the tree is associated
with a subset of the training data: the root with the whole
training set, nodes further down in the tree with increasingly
smaller subsets

I For each node N ...
I pick the ’best’ feature F
I use F to split N’s set of samples into subsets, each associated

with one of N’s children
I continue recursively

I Stop once a node contains only samples from one class.
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The ID3 Decision Tree

There are different types of decision trees, all following the
above greedy approach towards learning:

I ID3

I C4.5

I CART

ID3 Decision Trees

I Assumption: Each feature has only a finite number of
realizations (example ’color’: red, silver, blue)

I When splitting, we split into all possible realizations of a
feature (in the example: three-fold split)

I As the ’best’ feature, we choose the most informative one

I Analogy: The game 20 Questions → reach an unambiguous
answer with as few questions as possible
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Which Split is Better?

color?

red blue

medium costly cheap costlycheap

PS?

lots few

costlycostly cheap cheap medium

→ Strategy: Pick the split that leads to the purest subnodes
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Excursion: Information Theory image from [4]

Are these questions related...?

I How do we measure “uncertainty” / “randomness”?

I How dense can zip compress English text?

I How do we measure the similarity of two histograms?

I How do we measure whether two categorial variables
(e.g., clothing and wheather) are related?

Information Theory

I Claude E. Shannon: “A Mathematical
Theory of Communication” (1948)

I Various applications
I data compression
I natural language processing
I statistical inference
I pattern recognition / machine learning
I cryptography
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Excursion: Information Theory1

Binary Codes

I Imagine a language with four letters a,b,c,d.
A message in this language might be: “abaadbaabcabacda”

I Imagine transmitting this message in bits. We encode each
character separately:

character x a b c d

code c(x) 00 01 10 11

I This turns the message into:
00.01.00.00.11.01.00.00.01.10.00.01.00.10.11.00

I The message is 32 bits long. On average,
each character requires 2 bits of coding.

1Very nice read: Christopher Olah: “Visual Information Theory”.
https://colah.github.io/posts/2015-09-Visual-Information/
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Prefix Codes

I Idea: Frequent items should get shorter codes!

character x a b c d

probability P(x) 1/2 1/4 1/8 1/8

code c(x) 0 10 110 111

I This turns the message into:
0.10.0.0.111.10.0.0.10.110.0.10.0.110.111.0

I The message is 28 Bits long. On average,
each character requires 1.75 bits of coding.

I This is better! But what’s the best compression
we could achieve this way?

Remark

I The separation between the single characters is implicit.

I Why is that? Because no code is the prefix of another code!
This is why we call such codes prefix codes.
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Prefix Codes: Illustration

11
1

11
0

10
1

10
0

01
1

01 0

00
1

00
0

0 1

a 10 11

b
c d

110 111

P(a) = 0.5

P(b) = 0.25

P(c) = P(d) = 0.125

I We can visualize prefix codes as trees!

I Shorter codewords cause higher “costs”, because they block
larger parts of the space of codewords

14



Codelength vs. Probability

Our current strategy for choosing
short codes for high-probability
characters is based on the follow-
ing relation between probability
P(x) and code length L(x):

P(x) =
1

2L(x)

⇔ L(x) =
1

log2 P(x)

⇔ L(x) = − log2 P(x)

Remark

I If P(x) is not a power of two, we need to round up
(we cannot spend fractions of bits)

L(x) = d− log2 P(x)e
15
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Optimal Prefix Codes...?

I This means that – using our strategy – we spend the following
amount of bits on average per character x :

L̄ =
∑
x

P(x) · L(x) =
∑
x

P(x) · d− log2 P(x)e

I Could we do better with a different strategy? Maybe this one?

character x a b c d

probability P(x) 1/2 1/4 1/8 1/8

code c(x) 0 110 10 111

I This would lead to a (slightly worse) average codelength:

1

2
· 1 +

1

4
· 3 +

1

8
· 2 +

1

8
· 3 = 1.875

I It turns out: We cannot do better than our strategy from the
last slide (check Huffman Coding for more details).

I This leads to the central definition in information, entropy!
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The Entropy

Definition (Entropy)

Let x1, ..., xm be the realizations (characters, events, classes, ...)

of a discrete random variable X with distribution P = (p1, ..., pm).

Then we call

H(X )
(

= H(P)
)

= −
∑
i

pi · log2(pi )

the entropy of X (or P).

Remarks
I The entropy is a lower bound on the average character

code length achieveable by any prefix code c (proof: [1])

H(X ) ≤
∑
i

pi · length(c(xi )) for all prefix codes c

I In the above definition, 0 · log2(0) = 0 (i.e., a never-occurring
character does not contribute to the overall codelength).
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Entropy and Uncertainty

The entropy is a measure of the randomness
(or uncertainty) of a probability distribution.

Example

I Compute the entropy of these distributions!
I P = ( 1

4 ,
1
4 ,

1
4 ,

1
4 )

I P = ( 1
4 ,

1
4 ,

1
8 ,

3
8 )

I P = ( 1
2 ,

1
4 ,

1
4 ,

1
8 )→ H(P) = 1.75

I P = (1, 0, 0, 0)
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Entropy and Uncertainty

The entropy of a Bernoulli distribution: P = (p, 1− p)

0.0 0.2 0.4 0.6 0.8
p

0.00

0.25

0.50

0.75

1.00

H(
X)
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Entropy and Uncertainty

The entropy with 3 realizations: P = (p1, p2, 1− p1 − p2)

0.0 0.2 0.4 0.6 0.8 1.0
p2

0.0

0.2

0.4

0.6

0.8

1.0

p1

20



Cross Entropy

I We can also use entropy to measure the
difference between two distributions!

I Say, we have two languages X1 and X2:

character x a b c d

P(x) / Language X1 1/2 1/4 1/8 1/8

P(x) / Language X2 1/8 1/4 1/4 3/8

−log2(P(x)) / Language X2 3 2 2 1.42

I When encoding messages from Language X1 using a code
learned from Language X2, the average code length per
character is (at least):

1/2 · 3 + 1/4 · 2 + 1/8 · 2 + 1/8 · 1.42 ≈ 2.43

I Using the code from Language 2 requires (a lot) more bits
compared to Language 1’s original code (1.75 bits).

I This is because the probabilities are very different!
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Cross Entropy

Definition (Cross Entropy)

Let X1,X2 be random variables with distributions P = (p1, ..., pm)

and Q = (q1, ..., qm). Then we call

HQ(P) = −
m∑
i=1

pi · log2(qi )

the cross entropy of P and Q.

Remarks
I The cross entropy is not symmetric: HQ(P) 6= HP(Q).

I The cross entropy is always larger than the original entropy:
HQ(P) ≥ HP(P) = H(P) (i.e., the code from a different
language is never better than the original code).
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The Kullback-Leibler Divergence

The cross entropy leads to a distance measure between distributions:

Definition (Kullback-Leibler Divergence)

Let X1,X2 be random variables with distributions P = (p1, ..., pm) and

Q = (q1, ..., qm). Then we call

DKL(P||Q) = HQ(P)− H(P) =
∑
i

pi · log2
pi
qi

the Kullback-Leibler divergence (short: KL divergence) between X1 and X2.

Remarks

I The KL divergence is the difference in bits required when encoding
characters from P using the code from Q (instead of P).

I The KL Divergence is not symmetric: HX2 (X1) 6= HX1 (X2).

I There is a symmetric version, the Jensen-Shannon-Divergence:

DJS(P||Q) =
1

2

(
DKL(P||Q) + DKL(Q||P)

)
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Joint Entropy

Finally, we look at the joint distribution of random variables:

Definition (Joint Entropy)

Let X and Y be random variables with realizations x1, ..., xm and y1, ..., yn.

Then we call

H(X ,Y ) = −
∑
x,y

P(x , y) · log2(P(x , y))

the joint entropy of X and Y .

Remarks

I This is straightforward: We compute the entropy to the joint
probability table of X and Y

I Example: H(W ,C ) = −(56% · log2(56%) + ...) = 1.59

weather W / clothing C t-shirt coat

sunny 56% 13%

rainy 6% 25%
24



Mutual Information

Definition (Mutual Information)

Let X and Y be random variables with realizations x1, ..., xm
and y1, ..., yn. Then we call

I (X ,Y ) = H(X ) + H(Y )− H(X ,Y )

the mutual information between X and Y .

Remarks
I The mutual information is a measure for the relatedness of

two variables. Think of it like correlation (only, it works for
non-numerical variables too)!

t-shirt

56%

coat

sunny

rainy 6%

25%

13%

H(W,C) = 0.26

t-shirt

43%

coat

sunny

rainy
19% 12%

26%
H(W,C) = 0
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Information Theory for Decision Tree Learning

Back to decision trees – we compare splits by their purity!

color?

red blue

medium costly cheap costlycheap

PS?

lots few

costlycostly cheap cheap medium

I We check the class distribution in top node and child nodes
I Which split gives the strongest reduction in entropy?
I We measure this reduction by the information gain.

Example: Split by Color

I top: Htop = H(pcheap, pmedium, pcostly ) = H( 2
5 ,

1
5 ,

2
5 ) = 1.52

I left: H left = H(pcheap, pmedium, pcostly ) = H(0, 1
2 ,

1
2 ) = 1

I right: H right = H(pcheap, pmedium, pcostly ) = H( 2
3 , 0,

1
3 ) = 0.92

I information gain: Htop −
(

2
5 · H

left + 3
5 · H

right
)

= 0.57
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Definition: Information Gain

Definition (Information Gain)

Let X = {(x1, y1), ..., (xn, yn)} be a node’s samples (yi denotes

xi ’s class). We split X into subsets X1, ...,Xk by a feature F .

Given a set X ′, we define its class distribution’s entropy as:

H(X ′) = H(p1, ..., pC ) with pc :=
#{(x, y) ∈ X ′ | y = c}

#X ′

Then the Information Gain of feature F is:

Gain(X ,F ) := H(X )−
K∑

k=1

#Xk

#X
· H(Xk)

Remarks
I The information gain is always ≥ 0.
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Summary: ID3 Learning procedure
I Given: a set of samples X , each sample (x, y) ∈ X

consisting of features x and class label y
I Given: A set of features F , each feature f ∈ F mapping

objects to a finite set of values (f : X → {v 1
f , ..., v

nf
f }),

for example: fcolor : X → {red , silver , blue}

1 function build tree id3(X,F) :
2 i f all samples in X have the same label y ′:
3 r e t u r n (y ′ , −, {}) // leaf node: label y’, no feature, no children

4

5 i f F == {} : // no features left to split

6 y ′ := most frequent label in X
7 r e t u r n (y ′ , −, {})
8

9 f ′ := argmaxf∈F Gain(X , f )
10 use f ′ to split X into subsets X1, ...,Xk

11 r e t u r n ( -, f ′, { build tree id3(X1,F\{f ′}) ,
12 build tree id3(X2,F\{f ′}) ,
13 . . .
14 build tree id3(Xk ,F\{f ′}) })
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Decision Trees: Extensions

Later variants of decision trees (here, C4.5 and CART)
offer improvements and extensions

I dealing with missing feature values

I dealing with real-valued features

I better generalization by pruning

I application to regression problems

I different node purity measures (Gini impurity)
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Missing Feature Values

I Decision trees can classify
test samples with missing
features!

I Approach: Traverse all children
and conduct a voting over
the resulting labels

I Example: Classify a sample with few PSs, no airconditioning,
and unknown color

I unknown color → traverse leaves A, B and C
I 2 votes for costly, 1 for cheap → decision for class ‘costly’

32
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Missing Feature Values: Training (C4.5)

Training with Missing Features (ID3)

I Decision trees can train on samples missing some features!

I Samples that miss a feature f are ignored when computing
the information gain for f , Gain(X , f )

I In ID3, when splitting by f , all samples missing f are dropped.

I Problem? → Sample size may decrease rapidly when
descending into the tree.

Training with Missing Features (C4.5)

I When splitting by f , we distribute samples with missing
feature f over the child nodes

I This means: The missing feature is estimated
I To do so, different strategies exist

I ... use the most frequent value in the class
I ... use the most frequent value in the node
I ... distribute samples partly over the child nodes
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Real-valued Features (C4.5)
I ID3 only supports features with a finite number of

realizations. In practice, however, many features are
real-valued.

I Approach: for real-valued features f , choose a threshold t
and do a binary split: f (x) ≥ t vs. f (x) < t

I Learning gets more expensive: For real-valued features,
all potential thresholds t between any two values in X
need to be checked

color (nominal)

red

blue

silver
mileage (real-valued)
(l/100km)

Potential thresholds for the
Real-valued feature 'mileage'
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Real-valued Features (cont’d)

Note: With real-valued features, we can use multiple splits with
the same feature, but different thresholds!

Example

mileage ≥ 10.8?

color?costly

yes no

red blue silver

mileage ≥ 6.2?cheap 

costly cheap 

yes no

cheap 

35
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Decision Trees and Overfitting

I By using information gain, we try to achieve small
(i.e., simple) trees

I On the other hand, we split until nodes are pure
(which makes the trees large and complex)

I Should we really split until nodes are pure?

Example
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Pruning

I Fully-expanded trees tend to overfit

I Goal: reduce size/complexity by pruning
(which simplifies the decision boundary)

I Pruning means to remove nodes, starting at the leaves

I In the resulting mixed nodes, we classify by majority voting

fully expanded tree pruned tree
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Pruning 1: Validation

First Strategy: Use a Validation Set

I divide training samples into a training set and a validation set

I train a fully expanded tree on the training set

I successively remove leave nodes, as long as the error on the
validation set decreases

error rate

validation set

training set

tree size
(#nodes)fully expanded

tree
small
tree pruning

optimal
tree
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Pruning 2: Statistical Tests

Excursion: χ2 Testing
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Pruning 2: Statistical Tests
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Pruning 2: Statistical Tests

I We want to decide whether a split is useful
I Key question: Are feature and class label independent?
I We can check using a χ2 independence test
I The test’s p-value is the probability of observing the given

distribution, assuming that feature and class were independent
I Choose a threshold t and remove a split if p > t
I t can be set manually, or learned on a validation set

Example

uniform distribution

silber blue

25 20 10
cheap costlymedium

8.6 6.9 3.5
cheap costlymedium

10.5 8.4 4.2
cheap costlymedium

5.9 4.7 2.4
cheap costlymedium

red

How well do the observed 
values match a uniform 

distribution of the classes 
over the child nodes?

p-value: 0.09

color?

silver blue

cheap costlymedium

25 20 10

8 7 4
cheap costlymedium

12 8 3
cheap costlymedium

5 5 3
cheap costlymedium

red
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Approach 3: Rule-based “Post Pruning” (C4.5)

Approach

I Transform the tree into a
set of if-then-rules
(each path from root to
leaf becomes one rule)

I Remove parts from
each rule’s if-condition
and check if accuracy on
validation set improves

I Sort rules by their
accuracy and apply
them sequentially

PS?

color?costly

lots few

red  
blue

silver

air conditioning? cheap 

costly cheap  

yes no

costly

1) ( PS=lots )  -> costly
2) ( PS=few ^ color=blue )      -> cheap
3) ( PS=few ^ color=silver )    -> costly
4) ( PS=few ^ color=red ^ 
     airconditioning=yes ) -> costly
5) ( PS=few ^ color=red ^ 
     airconditioning=yes )      -> cheap

Evaluate rule (3) versus ...

3a) ( PS=few )  -> costly
3b) ( color=silver ) -> costly

and keep the best
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Approach 4: Random Forests image from [2]

I Use fully expanded trees... but many! (random forests)
I The construction of the single trees is randomized

(random forests)
I Test samples are classified with each tree, and a voting over

all trees is conducted
I Random forests are an ensemble method. This means:

many simple classifiers (=trees) are combined to reach a
more accurate decision
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Approach 4: Random Forests (cont’d)

What is a good strategy to construct the single trees?

I Goal 1: The single trees should be as accurate as possible

I Goal 2: The single trees should be as independent as possible

Approaches

I Choose a random feature for each split

I Choose random training data (bagging)

I Pre-select a subset of features randomly, and pick the best
feature from the subset (random input selection)
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Approach 4: Random Forests (cont’d)
Example Evaluation [5]: Error rates on a variety of standard
datasets from the (UCI Machine Learning Repository)
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Approach 4: Random Forests (cont’d)

Application Example: Kinekt Body Part Recognition2

2Shotton et al.: Real-Time Human Pose Recognition in Parts from Single
Depth Images (Microsoft Research), CVPR 2011.
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Decision Trees for Regression
We can also apply decision trees for regression
(CART: “Classification And Regression Trees”)

Applying a decision tree

I Classification: choose a class label per leaf by voting

I Regression: choose a value per leaf: The average ȳ

Training

I Classification: Pick feature with maximum information gain

I Regression: Pick feature that minimizes the prediction error

I A feature splits a node X into subnodes X1, ...,Xk . Within

each subnode, we define the average ȳk := 1
#Xk

∑
(x ,y)∈Xk

y

f ∗ := arg min
f ∈F

K∑
k=1

∑
(x ,y)∈Xk

(
y − ȳk

)2
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Decision Trees for Regression

Training (cont’d)

I When do we stop splitting? When the error in a node X falls
below a certain threshold T :

1

#X

∑
(x ,y)∈X

(
y − ȳ

)2
< T

Example: Predicting Car Prizes

feature f
2
: color (nominal)

red

blue

silver

feature f
1
: mileage(real-valued)

(l/100km)

price 
(EUR)

100K

20K

mileage > 9.2?

color?

yes no

red
blue silver

18K 

mileage > 10.8?

yes no

78K

48K

18K 

mileage > 5.4?
yes

no

31K

25K
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Decision Trees: Discussion
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