Machine Learning - winter term 2016/17 - # Chapter 02: Decision Trees Prof. Adrian Ulges Masters "Computer Science" DCSM Department University of Applied Sciences RheinMain ## Outline - 1. Introduction - 2. Excursion: Information Theory - 3. Decision Trees: Learning - 4. Pruning and Advanced Topics ## Classifiers image from [3] - Many different models exist for solving classification problems - ▶ We will discuss some of the most common - Decision Trees - ► Naive Bayes - Nearest Neighbor - Support Vector Machines - Neural Networks ## Decision Trees in Expert Systems image from [7] ## Decision Trees: Introduction Decision trees are claimed to be **the most** popular classifier world-wide [8] #### **Benefits** - flexibility (dealing with non-numeric features and regression problems) - simplicity and speed - transparency of the classifier's decisions #### Approach ► Choose a class based on simple **recursive decisions** (or *rules*) #### **Key Question** ▶ **Learning**: How do we construct a tree structure / rule set based on a (labeled) training set? ## Hello World: Classifying Water Animals [6] | sample | must come to surface? | color | has flippers? | class | |--------|-----------------------|-------|------------------|----------| | 1 | yes, uo | gray | yes / | fish | | 2 | yes no | blue | yes ⁾ | fish | | 3 | yes, no | blue | no | non-fish | | 4 | no ues | green | yes | non-fish | | 5 | no les | gray | yes | non-fish | yes must cove no to surface (45) 1001-100 fish yes (123) 1001-100 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 hos flifes sender address myemployer.com true read now read when bored false the word "soccer" false spam; do not read 104-fish ## Decision Tree Learning: Basics - General Approach: recursive construction of tree using a greedy strategy - ► Each node in the tree is associated with a **subset** of the training data: the root with the *whole* training set, nodes further down in the tree with increasingly smaller subsets - ► For each node N ... - pick the 'best' feature F - ▶ use F to **split** N's set of samples into **subsets**, each associated with one of N's children - continue recursively - ▶ Stop once a node contains only samples from one class. #### The ID3 Decision Tree There are different **types of decision trees**, all following the above greedy approach towards learning: - ► ID3 - ► C4.5 - ► CART #### **ID3** Decision Trees - ► Assumption: Each feature has only a **finite number** of realizations (*example 'color': red, silver, blue*) - ▶ When splitting, we split into all possible realizations of a feature (in the example: three-fold split) - As the 'best' feature, we choose the most **informative** one - ► **Analogy**: The game *20 Questions* → reach an unambiguous answer with as few questions as possible 7 → Strategy: Pick the split that leads to the purest subnodes Outline - Introduction - 2. Excursion: Information Theory - 3. Decision Trees: Learning - 4. Pruning and Advanced Topics ## Excursion: Information Theory image from [4] #### Are these questions related...? - ▶ How do we measure "uncertainty" / "randomness"? - ▶ How dense can **zip** compress English text? - ▶ How do we measure the **similarity** of two histograms? - ► How do we measure whether two categorial variables (e.g., clothing and wheather) are related? #### Information Theory - ► Claude E. Shannon: "A Mathematical Theory of Communication" (1948) - Various applications - data compression - natural language processing - statistical inference - pattern recognition / machine learning - cryptography 11 ## Excursion: Information Theory¹ #### **Binary Codes** - ► Imagine a language with four letters a,b,c,d. A message in this language might be: "abaadbaabcabacda" - ▶ Imagine transmitting this message in **bits**. We **encode** each character separately: | character x | a | b | С | d | |-------------|----|----|----|----| | code $c(x)$ | 00 | 01 | 10 | 11 | - ► The message is 32 bits long. On average, each character requires 2 bits of coding. ¹Very nice read: Christopher Olah: "Visual Information Theory". https://colah.github.io/posts/2015-09-Visual-Information/ #### **Prefix Codes** ▶ Idea: Frequent items should get shorter codes! | character x | a | b | С | d | |--------------------|-----|-----|-----|-----| | probability $P(x)$ | 1/2 | 1/4 | 1/8 | 1/8 | | code c(x) | 0 | 10 | 110 | 111 | - ► This turns the message into: 0.10.0.0.111.10.0.0.10.110.0.10.0.110.111.0 - ► The message is 28 Bits long. On average, each character requires 1.75 bits of coding. - ► This is better! But what's the **best compression** we could achieve this way? #### Remark - ▶ The **separation** between the single characters is implicit. - ▶ Why is that? Because **no code** is the **prefix** of another code! This is why we call such codes **prefix codes**. #### Prefix Codes: Illustration 13 - ▶ We can visualize prefix codes as trees! - ► Shorter codewords cause **higher "costs"**, because they block larger parts of the **space** of codewords ## Codelength vs. Probability Our **current strategy** for choosing short codes for high-probability characters is based on the following relation between **probability** P(x) and **code length** L(x): $$P(x) = \frac{1}{2^{L(x)}}$$ $$\Leftrightarrow L(x) = \frac{1}{\log_2 P(x)}$$ $$\Leftrightarrow L(x) = -\log_2 P(x)$$ #### Remark If P(x) is not a power of two, we need to **round up** (we cannot spend <u>fractions</u> of bits) $$L(x) = \lceil -\log_2 P(x) \rceil$$ #### ____ ## Optimal Prefix Codes...? $$\bar{L} = \sum_{x} P(x) \cdot L(x) = \sum_{x} P(x) \cdot \lceil -\log_2 P(x) \rceil$$ ▶ Could we do better with a different strategy? Maybe this one? | character x | a | b | С | d | |--------------------|-----|-----|-----|-----| | probability $P(x)$ | 1/2 | 1/4 | 1/8 | 1/8 | | code c(x) | 0 | 110 | 10 | 111 | ▶ This would lead to a (slightly worse) average codelength: $$\frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 3 + \frac{1}{8} \cdot 2 + \frac{1}{8} \cdot 3 = 1.875$$ - ▶ It turns out: We cannot do better than our strategy from the last slide (check **Huffman Coding** for more details). - ▶ This leads to the central definition in information, entropy! ## The Entropy #### Definition (Entropy) Let $x_1, ..., x_m$ be the realizations (characters, events, classes, ...) of a discrete random variable X with distribution $P = (p_1, ..., p_m)$. Then we call $$H(X)\Big(=H(P)\Big)=-\sum_{i}p_{i}\cdot log_{2}(p_{i})$$ the entropy of X (or P). #### Remarks ► The entropy is a **lower bound** on the **average character code length** achieveable by **any prefix code c** (proof: [1]) $$H(X) \leq \sum_{i} p_{i} \cdot length(c(x_{i}))$$ for all prefix codes c In the above definition, $0 \cdot log_2(0) = 0$ (i.e., a never-occurring character does not contribute to the overall codelength). #### 17 ## **Entropy and Uncertainty** The entropy is a measure of the **randomness** (or **uncertainty**) of a probability distribution. #### Example Compute the entropy of these distributions! $$P = (\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) = 2$$ $$P = (\frac{1}{4}, \frac{3}{8}, \frac{3}{8}) \left(\frac{1}{4}, \frac{1}{4}, \frac{1}{8}, \frac{3}{8}\right) = 1,91$$ $$P = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}) \rightarrow H(P) = 1.75$$ $$P = (1,0,0,0) = 0$$ ## **Entropy and Uncertainty** The entropy of a Bernoulli distribution: P = (p, 1 - p) #### 10 ## **Entropy and Uncertainty** The entropy with 3 realizations: $P = (p_1, p_2, 1 - p_1 - p_2)$ ## Cross Entropy - We can also use entropy to measure the difference between two distributions! - ▶ Say, we have two languages X_1 and X_2 : | character x | а | b | С | d | |---------------------------------|-----|-----|-----|------| | $P(x)$ / Language X_1 | 1/2 | 1/4 | 1/8 | 1/8 | | $P(x)$ / Language X_2 | 1/8 | 1/4 | 1/4 | 3/8 | | $-log_2(P(x))$ / Language X_2 | 3 | 2 | 2 | 1.42 | ▶ When encoding messages from Language X₁ using a **code** learned from Language X₂, the average code length per character is (at least): $$1/2 \cdot 3 + 1/4 \cdot 2 + 1/8 \cdot 2 + 1/8 \cdot 1.42 \approx 2.43$$ - ▶ Using the code from Language 2 requires (a lot) more bits compared to Language 1's original code (1.75 bits). - ▶ This is because the **probabilities** are very different! ## Cross Entropy ## Definition (Cross Entropy) Let X_1, X_2 be random variables with distributions $P = (p_1, ..., p_m)$ and $Q = (q_1, ..., q_m)$. Then we call $$H_Q(P) = -\sum_{i=1}^m p_i \cdot log_2(q_i)$$ the cross entropy of P and Q. #### Remarks - ▶ The cross entropy is not symmetric: $H_Q(P) \neq H_P(Q)$. - ▶ The cross entropy is always larger than the original entropy: $H_Q(P) \ge H_P(P) = H(P)$ (i.e., the code from a different language is never better than the original code). ## The Kullback-Leibler Divergence The cross entropy leads to a distance measure between distributions: #### Definition (Kullback-Leibler Divergence) Let X_1, X_2 be random variables with distributions $P = (p_1, ..., p_m)$ and $Q = (q_1, ..., q_m)$. Then we call $$D_{KL}(P||Q) = H_Q(P) - H(P) = \sum_i p_i \cdot log_2 \frac{p_i}{q_i}$$ the Kullback-Leibler divergence (short: KL divergence) between X_1 and X_2 . #### Remarks - ► The KL divergence is the **difference in bits** required when encoding characters from P using the code from Q (instead of P). - ▶ The KL Divergence is not symmetric: $H_{X_2}(X_1) \neq H_{X_1}(X_2)$. - ▶ There is a symmetric version, the Jensen-Shannon-Divergence: $$D_{JS}(P||Q) = \frac{1}{2} \Big(D_{KL}(P||Q) + D_{KL}(Q||P) \Big)$$ ## Joint Entropy Finally, we look at the joint distribution of random variables: #### Definition (Joint Entropy) Let X and Y be random variables with realizations $x_1, ..., x_m$ and $y_1, ..., y_n$. Then we call $$H(X,Y) = -\sum_{x,y} P(x,y) \cdot \log_2(P(x,y))$$ the joint entropy of X and Y. #### Remarks - ► This is straightforward: We compute the entropy to the joint probability table of *X* and *Y* - ► Example: $H(W, C) = -(56\% \cdot log_2(56\%) + ...) = 1.59$ | weather W / clothing C | t-shirt | coat | |------------------------|---------|------| | sunny | 56% | 13% | | rainy | 6% | 25% | ## Mutual Information ## Definition (Mutual Information) Let X and Y be random variables with realizations $x_1, ..., x_m$ and $y_1, ..., y_n$. Then we call $$I(X,Y) = H(X) + H(Y) - H(X,Y)$$ the mutual information between X and Y. #### Remarks ▶ The mutual information is a measure for the **relatedness** of two variables. Think of it like *correlation* (only, it works for non-numerical variables too)! #### Outline - 1. Introduction - 2. Excursion: Information Theory - 3. Decision Trees: Learning - 4. Pruning and Advanced Topics ## Information Theory for Decision Tree Learning Back to decision trees - we compare splits by their purity! - ▶ We check the **class distribution** in top node and child nodes - ▶ Which split gives the **strongest reduction in entropy**? - ▶ We measure this reduction by the **information gain**. #### Example: Split by Color - ▶ top: $H^{top} = H(p_{cheap}, p_{medium}, p_{costly}) = H(\frac{2}{5}, \frac{1}{5}, \frac{2}{5}) = 1.52$ - left: $H^{left} = H(p_{cheap}, p_{medium}, p_{costly}) = H(0, \frac{1}{2}, \frac{1}{2}) = 1$ - ▶ right: $H^{right} = H(p_{cheap}, p_{medium}, p_{costly}) = H(\frac{2}{3}, 0, \frac{1}{3}) = 0.92$ - ▶ information gain: $H^{top} \left(\frac{2}{5} \cdot H^{left} + \frac{3}{5} \cdot H^{right}\right) = 0.57$ # Definition: Information Gain Definition (Information Gain) Let $X = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$ be a node's samples $(y_i \text{ denotes } \mathbf{x}_i \text{ 's class})$. We split X into subsets $X_1, ..., X_k$ by a feature F. Given a set X', we define its class distribution's entropy as: $$H(X') = H(p_1, ..., p_C)$$ with $p_c := \frac{\#\{(\mathbf{x}, y) \in X' \mid y = c\}}{\#X'}$ Then the **Information Gain** of feature F is: $$Gain(X,F) := H(X) - \sum_{k=1}^{K} \frac{\#X_k}{\#X} \cdot H(X_k)$$ #### Remarks ▶ The information gain is always ≥ 0 . ## Summary: ID3 Learning procedure - ▶ Given: a set of samples X, each sample $(\mathbf{x}, y) \in X$ consisting of features \mathbf{x} and class label y - ▶ Given: A set of **features** F, each feature $f \in F$ **mapping** objects to a finite set of values $(f : X \to \{v_f^1, ..., v_f^{n_f}\})$, for example: $f_{color} : X \to \{red, silver, blue\}$ ``` function build_tree_id3(X,F): 1 if all samples in X have the same label y': 2 return (y', -, \{\}) // leaf node: label y', no feature, no children 3 4 if F = \{\}: 5 // no features left to split y' := most frequent label in X return (y', -, \{\}) 7 f' := argmax_{f \in F} Gain(X, f) 9 use f' to split X into subsets X_1, ..., X_k 10 return (-, f', \{ build_tree_id3(X_1, F \setminus \{f'\}) \} 11 build_tree_id3(X_2, F \setminus \{f'\}), 12 13 build_tree_id3(X_k, F \setminus \{f'\}) }) 14 ``` Outline - 1. Introduction - 2. Excursion: Information Theory - 3. Decision Trees: Learning - 4. Pruning and Advanced Topics ## Decision Trees: Extensions Later variants of decision trees (here, C4.5 and CART) offer **improvements** and **extensions** - dealing with missing feature values - dealing with real-valued features - better generalization by pruning - application to regression problems - different node purity measures (Gini impurity) ## Missing Feature Values - Decision trees can classify test samples with missing features! - ► Approach: Traverse all children and conduct a voting over the resulting labels - **Example**: Classify a sample with *few PSs*, *no airconditioning*, and **unknown color** - ▶ unknown color → traverse leaves A, B and C - ightharpoonup 2 votes for costly, 1 for cheap ightharpoonup decision for class 'costly' ## Missing Feature Values: Training (C4.5) #### Training with Missing Features (ID3) - ▶ Decision trees can **train** on samples **missing some features**! - ▶ Samples that miss a feature f are ignored when computing the information gain for f, Gain(X, f) - ▶ In ID3, when splitting by f, all samples missing f are dropped. - ▶ Problem? → Sample size may decrease rapidly when descending into the tree. #### Training with Missing Features (C4.5) - ▶ When splitting by *f* , we distribute samples with missing feature *f* over the child nodes - ▶ This means: The missing feature is estimated - ▶ To do so, different strategies exist - ... use the most frequent value in the class - ... use the most frequent value in the node - ... distribute samples partly over the child nodes #### 33 ## Real-valued Features (C4.5) - ▶ ID3 only supports features with a **finite number** of realizations. In practice, however, many features are **real-valued**. - ▶ Approach: for real-valued features f, choose a **threshold t** and do a **binary split**: $f(x) \ge t$ vs. f(x) < t - ► Learning gets more expensive: For real-valued features, all potential thresholds t between any two values in X need to be checked ## Real-valued Features (cont'd) Note: With real-valued features, we can use **multiple splits** with the same feature, but *different thresholds!* #### Example #### 35 ## Decision Trees and Overfitting - By using information gain, we try to achieve small (i.e., simple) trees - ► On the other hand, we split until nodes are **pure** (which makes the trees large and complex) - ▶ **Should we** really split until nodes are pure? ## Pruning - Fully-expanded trees tend to overfit - ► Goal: reduce size/complexity by **pruning** (which simplifies the decision boundary) - ▶ Pruning means to remove nodes, starting at the leaves - ▶ In the resulting *mixed* nodes, we classify by **majority voting** 37 ## Pruning 1: Validation #### First Strategy: Use a Validation Set - divide training samples into a training set and a validation set - train a fully expanded tree on the training set - successively remove leave nodes, as long as the error on the validation set decreases # Pruning 2: Statistical Tests Excursion: χ^2 Testing 39 ## Pruning 2: Statistical Tests ## Pruning 2: Statistical Tests - ▶ We want to decide whether a split is useful - ▶ Key question: Are feature and class label independent? - We can check using a χ^2 independence test - ► The test's **p-value** is the probability of *observing the given distribution*, assuming that feature and class were *independent* - ightharpoonup Choose a **threshold t** and remove a split if p > t - t can be set manually, or learned on a validation set #### Example ## Approach 3: Rule-based "Post Pruning" (C4.5) #### Approach - Transform the tree into a set of if-then-rules (each path from root to leaf becomes one rule) - Remove parts from each rule's if-condition and check if accuracy on validation set improves - Sort rules by their accuracy and apply them sequentially | 1) (PS=lots) | -> costly | |----------------------------|-------------| | 2) (PS=few ^ color=blue) | -> cheap | | 3) (PS=few ^ color=silver |) -> costly | | 4) (PS=few ^ color=red ^ | | | airconditioning=yes) | -> costly | | 5) (PS=few ^ color=red ^ | | | airconditioning=yes) | -> cheap | | Evaluate rule (3) versus | | | 3a) (PS=few) | -> costly | | 3b) (color=silver) | -> costly | | and keep the best | | ## Approach 4: Random Forests image from [2] - ▶ Use fully expanded trees... but **many**! (random forests) - ► The construction of the single trees is randomized (random forests) - ► Test samples are classified with each tree, and a **voting** over all trees is conducted - ▶ Random forests are an ensemble method. This means: many simple classifiers (=trees) are combined to reach a more accurate decision ## Approach 4: Random Forests (cont'd) What is a good strategy to construct the single trees? - ▶ Goal 1: The single trees should be as accurate as possible - ▶ Goal 2: The single trees should be as independent as possible ## **Approaches** - ► Choose a random feature for each split - Choose random training data (bagging) - ▶ Pre-select a **subset of features** randomly, and pick the best feature from the subset (random input selection) ## Approach 4: Random Forests (cont'd) **Example Evaluation [5]**: Error rates on a variety of standard datasets from the *(UCI Machine Learning Repository)* | Data set Adaboost | | Selection | Forest-RI single input | One tree | |-------------------|------|-----------|------------------------|----------| | Glass | 22.0 | 20.6 | 21.2 | 36.9 | | Breast cancer | 3.2 | 2.9 | 2.7 | 6.3 | | Diabetes | 26.6 | 24.2 | 24.3 | 33.1 | | Sonar | 15.6 | 15.9 | 18.0 | 31.7 | | Vowel | 4.1 | 3.4 | 3.3 | 30.4 | | Ionosphere | 6.4 | 7.1 | 7.5 | 12.7 | | Vehicle | 23.2 | 25.8 | 26.4 | 33.1 | | German credit | 23.5 | 24.4 | 26.2 | 33.3 | | Image | 1.6 | 2.1 | 2.7 | 6.4 | | Ecoli | 14.8 | 12.8 | 13.0 | 24.5 | | Votes | 4.8 | 4.1 | 4.6 | 7.4 | | Liver | 30.7 | 25.1 | 24.7 | 40.6 | | Letters | 3.4 | 3.5 | 4.7 | 19.8 | | Sat-images | 8.8 | 8.6 | 10.5 | 17.2 | | Zip-code | 6.2 | 6.3 | 7.8 | 20.6 | | Waveform | 17.8 | 17.2 | 17.3 | 34.0 | | Twonorm | 4.9 | 3.9 | 3.9 | 24.7 | | Threenorm | 18.8 | 17.5 | 17.5 | 38.4 | | Ringnorm | 6.9 | 4.9 | 4.9 | 25.7 | | | | | | | 45 ## Approach 4: Random Forests (cont'd) Application Example: Kinekt Body Part Recognition² ²Shotton et al.: Real-Time Human Pose Recognition in Parts from Single Depth Images (Microsoft Research), CVPR 2011.