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1. Introduction
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> Many different models exist for solving classification
problems

> We will discuss some of the most common
» Decision Trees

> Naive Bayes

> Nearest Neighbor

» Support Vector Machines
> Neural Networks

Decision Trees in Expert Systems image fom 1
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Decision Trees: Introductio

Decision trees are claimed
to be the most popular
classifier world-wide [8]

Benefits
> flexibility (dealing with
non-numeric features and
regression problems)

> simplicity and speed
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> transparency of the classifier's decisions

Approach

> Choose a class based on simple recursive decisions (or rules)

Key Question

> Learning: How do we construct a tree structure / rule set
based on a (labeled) training set?

Hello World: Classifying Water Animals [6]

| color | has flippers? | class

sample | must come to surface?

1 yeé no gray yes / fish
2 S, Uo blue yes - fish
3 Zéj, i blue no non-fish
4 wo, e green yes non-fish
5 no ! gray yes non-fish
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sender address

Decision Tree Learning: Basics ras daman
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> General Approach: recursive s el
construction of tree using
a greedy Strategy read now. spam; do not read

> Each node in the tree is associated
with a subset of the training data: the root with the whole
training set, nodes further down in the tree with increasingly
smaller subsets

> For each node N ...
> pick the 'best’ feature F
> use F to split N's set of samples into subsets, each associated
with one of N's children
> continue recursively

> Stop once a node contains only samples from one class.

The ID3 Decision Tree *

There are different types of decision trees, all following the
above greedy approach towards learning:

» ID3
» C4.5
» CART

ID3 Decision Trees
> Assumption: Each feature has only a finite number of
realizations (example 'color’: red, silver, blue)

> When splitting, we split into all possible realizations of a
feature (in the example: three-fold split)

> As the 'best’ feature, we choose the most informative one

> Analogy: The game 20 Questions — reach an unambiguous
answer with as few questions as possible




Which Split is Better?
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2. Excursion: Information Theory
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Excursion: Information Theory image from *

Are these questions related...?
> How do we measure “uncertainty” / “randomness”?
> How dense can zip compress English text?
> How do we measure the similarity of two histograms?

> How do we measure whether two categorial variables
(e.g., clothing and wheather) are related?

Information Theory

» Claude E. Shannon: “A Mathematical
Theory of Communication” (1948)

> Various applications

> data compression

> natural language processing

statistical inference

pattern recognition / machine learning

cryptography

vV v Vv

Excursion: Information Theory?

Binary Codes

> Imagine a language with four letters a,b,c,d.
A message in this language might be: “abaadbaabcabacda”

> Imagine transmitting this message in bits. We encode each
character separately:

characterx” a | b ’ C ’ d
code ¢c(x) | 00 | 01 | 10 | 11

> This turns the message into:
00.01.00.00.11.01.00.00.01.10.00.01.00.10.11.00

> The message is 32 bits long. On average,
each character requires 2 bits of coding.

Very nice read: Christopher Olah: “Visual Information Theory” .

https://colah.github.io/posts/2015-09-Visual-Information /
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Prefix Codes

> ldea: Frequent items should get shorter codes!

character x a b C d
probability P(x) || 1/2 | 1/4 | 1/8 | 1/8
code c(x) 0 | 10 | 110 | 111

> This turns the message into:
0.10.0.0.111.10.0.0.10.110.0.10.0.110.111.0

> The message is 28 Bits long. On average,
each character requires 1.75 bits of coding.

> This is better! But what's the best compression
we could achieve this way?

Remark

> The separation between the single characters is implicit.

> Why is that? Because no code is the prefix of another codel!
This is why we call such codes prefix codes.
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Prefix Codes: lllustration

P(b) = 0.25

P(c)

» We can visualize prefix codes as trees!

> Shorter codewords cause higher “costs”, because they block
larger parts of the space of codewords

14




Codelength vs. Probability

Our current strategy for choosing a
short codes for high-probability
characters is based on the follow-

P(b) = 0.25
ing relation between probability i
P(x) and code length L(x): - = T
1
PO = 5
1
&Sl (x)= ————
() log, P(x)

& L(x) = —log, P(x)

Remark

> If P(x) is not a power of two, we need to round up
(we cannot spend fractions of bits)

L(x) = [—logy P(x)]
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Optimal Prefix Codes...? | *

> This means that — using our strategy — we spend the following
amount of bits on average per character x:

L= P(x)-Lx)=) P(x)-[~log P(x)]

> Could we do better with a different strategy? Maybe this one?

character x a b C d
probability P(x) || 1/2 | 1/4 | 1/8 | 1/8
code c(x) 0 | 110 | 10 | 111

> This would lead to a (slightly worse) average codelength:

1 1 1 1
—_ —_— —_ —_ :1_
> 1+4 3+8 2+8 3 875

> It turns out: We cannot do better than our strategy from the
last slide (check Huffman Coding for more details).

> This leads to the central definition in information, entropy!
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The Entropy *

Definition (Entropy)

Let x1,...,xm be the realizations (characters, events, classes, ...)
of a discrete random variable X with distribution P = (pl, vens P}

HX)( = H(P)j ~ S logale \)
the entropy of X (or P). -

e ——

Then we call

Remarks
> The entropy is a lower bound on the average character

code length achieveable by any prefix code c (proof: [1])
H(X) < Z pi - length(c(x;))  for all prefix codes ¢

> In the above definition, 0 - logx(0) = 0 (i.e., a never-occurring

character does not contribute to the overall codelength).
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Entropy and Uncertainty »*
The entropy is a measure of the randomness / Oc
. e g a o

(or uncertainty) of a probability distribution. _——f——N
Example 51 | SXd
> Compute the entropy of these distributions! C’ 5 A o

_ (1 11 1 |
» P=(393:3) = 2 &—T\

> P=(1,0,0,0) = C

18




Entropy and Uncertainty
The entropy of a Bernoulli distribution: P = (p,1 — p)
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Entropy and Uncertainty
The entropy with 3 realizations: P = (p1, p2,1 — p1 — p2)

20




Cross Entropy

> We can also use entropy to measure the
difference between two distributions!

> Say, we have two languages X7 and Xo:

character x a b C d

P(x) / Language X 1/211/4]11/8| 1/8
P(x) / Language X 1/8 | 1/4|1/4 | 3/8
—logx(P(x)) / Language Xo || 3 2 2 | 142

> When encoding messages from Language Xi using a code

learned from Language X, the average code length per
character is (at least):

1/2-34+1/4-24+1/8-2+1/8-1.42~2.43

> Using the code from Language 2 requires (a lot) more bits
compared to Language 1's original code (1.75 bits).

> This is because the probabilities are very different!
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Cross Entropy

Definition (Cross Entropy)

and Q = (q1, ..., qm). Then we call

Ho(P) ==Y p;- log2(a;)
i=1

the cross entropy of P and Q.

Let X1, Xo be random variables with distributions P = (p1, ..., Pm)

Remarks
> The cross entropy is not symmetric: Ho(P) # Hp(Q).

> The cross entropy is always larger than the original entropy:

Hq(P) > Hp(P) = H(P) (i.e., the code from a different
language is never better than the original code).

22




The Kullback-Leibler Divergence

The cross entropy leads to a distance measure between distributions:

Definition (Kullback-Leibler Divergence)

Let X1, Xo be random variables with distributions P = (px, ..., pm) and
Q =(q1,...,qm). Then we call

Dri(P|Q) = Hq(P) — ZP: logz—

the Kullback-Leibler divergence (short: KL divergence) between X; and X,.

Remarks

> The KL divergence is the difference in bits required when encoding
characters from P using the code from Q (instead of P).

> The KL Divergence is not symmetric: Hx,(X1) # Hx, (X2).

> There is a symmetric version, the Jensen-Shannon-Divergence:

Dis(PI1Q) = 2 (Da(PlIQ) + Dia(QIIP))
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Joint Entropy

Finally, we look at the joint distribution of random variables:

1Definition (Joint Entropy)

| Let X and Y be random variables with realizations xi, ..., xm and yi, ..., ¥n.
Then we call

H(X,Y) == P(x,y) - logy(P(x,y))

the joint entropy of X and Y.

Remarks

> This is straightforward: We compute the entropy to the joint
probability table of X and Y

> Example: H(W, C) = —(56% - log»(56%) + ...) = 1.59

weather W / clothing C || t-shirt | coat

sunny 56% | 13%
rainy 6% | 25%

24




Mutual Information

Definition (Mutual Information)

and y1, ..., ¥n. Then we call

the mutual information between X and Y.

I(X,Y)=H(X)+ H(Y) = H(X,Y)

Let X and Y be random variables with realizations xi, ..., Xm

Remarks

» The mutual information is a measure for the relatedness of
two variables. Think of it like correlation (only, it works for

non-numerical variables too)!

t-shirt coat t-shirt
sunny 13% sunny
56% 43%
H(W,C) = 0.26 i
rainy 6% rainy 19%

coat

26%

12%

H(W,C) =0

25
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3. Decision Trees: Learning
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Information Theory for Decision Tree Learning

Back to decision trees — we compare splits by their purity!

SZpmm
- tmae

.. costly cheap ~ cheap = costly |

> We check the class distribution in top node and child nodes
> Which split gives the strongest reduction in entropy?
> We measure this reduction by the information gain.

Example: Split by Color
> top: H*P = H(pcheam Pmedium, Pcostly) — H(%,
0

> left: H® = H(pcheapa Pmedium, Pcostly) = H( )
> right: Hent — H(pcheam Pmedium pcostly) = H(§7 3 %

Definition: Information Gain

Definition (Information Gain)

Let X = {(x1,Y1), -, (Xn, ¥n)} be a node’s samples (y; denotes
\X;'s class). We split X into subsets Xi, ..., Xk by a feature F.
| Given a set X', we define its class distribution’s entropy as:

#{(x,y) e X'y = ¢}

H(X/) = H(Pl, . 7PC) with Pc ‘= #X’

Then the Information Gain of feature F is:

K
Gain(X, F) = H(X) = ) % - H(X)
=]

Remarks
» The information gain is always > 0.

28




Summary: ID3 Learning procedure

> Given: a set of samples X, each sample (x,y) € X
consisting of features x and class label y

> Given: A set of features F, each feature f € F mapping
objects to a finite set of values (f : X — {v}, ..., v/"}),
for example: feoor : X — {red, silver, blue}

1 function build_tree_id3(X,F):

2 if all samples in X have the same label y':

3 return (y/ L =, {}) // leaf node: label y', no feature, no children
4

5 it F= { } : // no features left to split
6 y' := most frequent label in X

7 return (y', —, {})

8

9 f' := argmaxser Gain(X, f)

10 use f' to split X into subsets X, ..., Xk

11 return (-, ', { build_tree_id3(Xi, F\{f'}) ,

12 build_tree_id3(Xz, F\{f'}) ,

13 e

14 build_tree_id3(Xk, F\{f'}) })

15
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4. Pruning and Advanced Topics
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Decision Trees: Extensions »*

Later variants of decision trees (here, C4.5 and CART)
offer improvements and extensions

> dealing with missing feature values
> dealing with real-valued features
> better generalization by pruning
> application to regression problems

> different node purity measures (Gini impurity)

31

Missing Feature Values

color?

> Decision trees can classify
test samples with missing
features!

> Approach: Traverse all children
and conduct a voting over
the resulting labels

> Example: Classify a sample with few PSs, no airconditioning,
and unknown color

» unknown color — traverse leaves A, B and C
> 2 votes for costly, 1 for cheap — decision for class ‘costly’

32




Missing Feature Values: Training (C4.5) *
Training with Missing Features (ID3)

> Decision trees can train on samples missing some features!

> Samples that miss a feature f are ignored when computing
the information gain for f, Gain(X, f)

> In ID3, when splitting by f, all samples missing f are dropped.

> Problem? — Sample size may decrease rapidly when
descending into the tree.

Training with Missing Features (C4.5)

> When splitting by f, we distribute samples with missing
feature f over the child nodes

> This means: The missing feature is estimated

> To do so, different strategies exist

> ... use the most frequent value in the class
> ... use the most frequent value in the node

> ... distribute samples partly over the child nodes
33

Real-valued Features (C4.5) *

> |ID3 only supports features with a finite number of
realizations. In practice, however, many features are
real-valued.

> Approach: for real-valued features f, choose a threshold t
and do a binary split: f(x) > t vs. f(x) <t

> Learning gets more expensive: For real-valued features,
all potential thresholds t between any two values in X
need to be checked

ST AnsT Il Potential thresholds for the
AT P 4 Real-valued feature 'mileage’
red . ettt e e | ' .

blue ———~. et e @ @i <.

silver | joi i igi-i i i % N

» Mileage (real-valued)
(/100km)
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Real-valued Features (cont'd)

Note: With real-valued features, we can use multiple splits with

the same feature, but different thresholds!

mileage
(11100km)

Example
| mileage= 1082 color
red o | el | °
blue ° olo
silver q ‘o °
Y 10.8
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Decision Trees and Overfitting

> By using information gain, we try to achieve small
(i.e., simple) trees

> On the other hand, we split until nodes are pure
(which makes the trees large and complex)

> Should we really split until nodes are pure?

Example & O IOO
__0° _ __ 0
Y% 1 M E
B s e '\
O |
OI‘A 4 4 1 ©
‘*—-Qﬁ,“fl’;:! NG,
Sqn - - - & ‘
| O o 1 I
| O |10
E; N ‘ ) 36




Pruning

> Fully-expanded trees tend to overfit

> Goal: reduce size/complexity by pruning
(which simplifies the decision boundary)

> Pruning means to remove nodes, starting at the leaves
> In the resulting mixed nodes, we classify by majority voting

fully expanded tree pruned ftree

37

Pruning 1: Validation
First Strategy: Use a Validation Set

> divide training samples into a training set and a validation set
> train a fully expanded tree on the training set

> successively remove leave nodes, as long as the error on the
validation set decreases

error rate ~optimal
i tree

/ validation set

- fraining set

> tree size
(#nodes)

fully expanded
_ tree
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Pruning 2: Statistical Tests *
Excursion: x? Testing

39

Pruning 2: Statistical Tests *

40




Pruning 2: Statistical Tests *

We want to decide whether a split is useful

Key question: Are feature and class label independent?

We can check using a x2 independence test

The test's p-value is the probability of observing the given
distribution, assuming.that feature and class were independent
Choose a threshold t and remove a split if p > ¢

t can be set manually, or learned on a validation set

vV v vV

vV Vv

Example

How well do the observed
values mateh a uniform
distribution of the classes
over the child nodes? uniform

silver silber

41

Approach

> Transform the tree into a
set of if-then-rules
(each path from root to
leaf becomes one rule)

> Remove parts from
each rule's if-condition 1) ( pS=lots ) = costly
, 2) ( Ps=few  color=blue )
and check if accuracy on (st

PS=few "~ color=red "

Va“dation set improves airconditioning=yes ) -> costly

5) ( PS=few " color=red *
. airconditioning=yes ) -> cheap
> Sort rules by their
Evaluate rule (3) versus ...
accuracy and apply 3a) ( PS=few ) -> costly

th t ” 3b) ( color=silver ) -> costly
em Sequen Ia y and keep the best

42




Approach 4: Random Forests image fom 21
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Use fully expanded trees... but many! (random forests)

The construction of the single trees is randomized

(random forests)

> Test samples are classified with each tree, and a voting over
all trees is conducted

> Random forests are an ensemble method. This means:

many simple classifiers (=trees) are combined to reach a

more accurate decision

v
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Approach 4: Random Forests (cont'd)

What is a good strategy to construct the single trees?
> Goal 1: The single trees should be as accurate as possible

> Goal 2: The single trees should be as independent as possible

Approaches

> Choose a random feature for each split
> Choose random training data (bagging)

> Pre-select a subset of features randomly, and pick the best
feature from the subset (random input selection)
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Approach 4: Random Forests (cont'd)

Example Evaluation [5]: Error rates on a variety of standard
datasets from the (UCI Machine Learning Repository)

Data set Adaboost Selection Forest-RI single input One tree
Glass 220 20.6 21.2 36.9
Breast cancer 3.2 29 27 6.3
Diabetes 26.6 24.2 24.3 33.1
Sonar 15.6 15.9 18.0 31.7
Vowel 4.1 34 33 30.4
Ionosphere 6.4 7.1 1.5 12.7
Vehicle 23.2 25.8 26.4 33.1
German credit 23.5 24.4 26.2 333
Image 1.6 2.1 2.7 6.4
Ecoli 14.8 12.8 13.0 24.5
Votes 4.8 4.1 4.6 7.4
Liver 30.7 25.1 24.7 40.6
Letters 34 3.5 4.7 19.8
Sat-images 8.8 8.6 10.5 17.2
Zip-code 6.2 6.3 7.8 20.6
Waveform 17.8 17.2 17.3 34.0
Twonorm 4.9 3.9 3.9 24.7
Threenorm 18.8 17.5 175 38.4
Ringnorm 6.9 4.9 4.9 25.7
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Approach 4: Random Forests (cont'd)

Application Example: Kinekt Body Part Recognition?

*Shotton et al.: Real-Time Human Pose Recognition in Parts from Single

Depth Images (Microsoft Research), CVPR 2011.
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