

Machine Learning – winter term 2016/17 –

Chapter 03: Features

Prof. Adrian Ulges Masters "Computer Science" DCSM Department University of Applied Sciences RheinMain

Outline

1. Feature Properties

- 2. Three Basic Techniques
- 3. Features for Images: Filters
- 4. Features for Images: Local Features
- 5. Features for Text

Introduction image from [?]

Often, feature extraction is more important to the success of an ML system than the model/classifier!

We will

- ... discuss some generic properties of good features.
- ... present three basic techniques in feature engineering.
- In look at some features for *images* and *text*.

Features

- ► Features are formal representations of real-world objects
- We can think of them as attribute-value pairs

- The term "feature" can refer to a single value (such as color or mileage), or to the object's whole feature vector.
- Feature vectors are often high-dimensional (like the pixels of an image or the terms of a text)
- In the following, we will discuss mostly numerical features (we can turn all features into numerical ones by histogramming + one-hot encoding)

Features: Example

• Use the **raw data** as features? \rightarrow Example: OCR

In many cases we can do better: Cherrypicking the 'right' features makes the classifier's job easier.

Remarks

Modern deep learners (later) tend to operate on the raw data and learn their features themselves.

Key Question

What are properties of good features?

Objective 1: Compactness

"Feature extraction is a special form of dimensionality reduction"

(en.wikipedia.org)

- We require features to be compact
 - In for efficiency reasons
 - ... for accuracy reasons (curse of dimensionality)
- Example: Using raw pixel values is inefficient
 (3 megapixels = 3,000,000 features → subsample the image)
- We will address other forms of dimensionality reduction later

Objective 2: Invariance

Invariance in Computer Science

 An invariant is a property that always evaluates to the same value, before and after applying a sequence of operations

1
2 int
$$x := 10;$$

3 { $x==10$ }
4 foo(x);
5 { $x==10$ }
6
7
8

 Invariants are used to prove the absence of side effects and the correctness of algorithms

Invariance of Features in ML

... is basically the same: We call a feature f invariant (or robust) with respect to a transformation T if the feature does not change (or does not change significantly) when transforming the input object:

$$f(T(\mathbf{x})) = f(\mathbf{x})$$
 (or $f(T(\mathbf{x})) \approx f(\mathbf{x})$)

Invariance: Example image from [?]

The feature "color histogram" is invariant with respect to flipping the input image

Invariance: Sample Transformations $T_{\text{images from [?] [?]}}$

In machine learning, we want to be invariant to lots of transformations

Machine Learning on Images

- illumination
- perspective, pose
- geometric transformations
- noise, compression artifacts

Machine Learning on Text

language

. . .

wording (synonyms)

Other Machine Learning

- inflation (in credit scoring)
- user rating level (in recommenders)

Strategies to achieve Invariance

Approach 1: Normalization

- Correct for the effect of T by normalizing
- Example: normalize for inflation
- Example: brightness normalization

Approach 2: Virtual Samples

- Generate extra training samples by applying T to the existing ones
- Example: OCR training samples
- Example: Kinekt body pose recognition

Approach 3: Integration

Apply all possible variations of T to the input object and average the resulting features

$$f^{inv}(\mathbf{x}) = rac{1}{|\mathcal{T}|} \int_{\mathcal{T}\in\mathcal{T}} f(\mathcal{T}(\mathbf{x})) d\mathcal{T}$$

666666666 66666666 66666666 66666666

Objective 3: Discriminativity

- Features should be discriminative: They should allow us to distinguish objects from different classes
- Discriminativity and invariance are often hard to combine
- Example (maximal invariance, minimal discriminativity)

$$f(\mathbf{x}) = 42 \quad \forall \mathbf{x}$$

• Example (should we go for invariance or discriminativity?)

$$f(\mathbf{M}) = f(\mathbf{W})?$$

Key Questions

- How do we find features that are both robust/invariant and discriminative?
- With respect to which transformations T should we be robust?
- Are all transformations equally likely?

Outline

1. Feature Properties

- 2. Three Basic Techniques
- 3. Features for Images: Filters
- 4. Features for Images: Local Features
- 5. Features for Text

Features: Three Basic Techniques

⊁

1. Feature Selection

- Uninformative features make ML problems harder.
- 2. Feature Normalization
 - Features should not **dominate**.
- 3. Feature Transformation
 - There is an interdependency between features and ML model.

1. Uninformative Features are Harmful

- ML problems are often high-dimensional (with hundreds or thousands of features)
- Which features are informative for our problem? (we will try to learn them → later)

Example: Nearest Neighbors \rightarrow the "curse of dimensionality"

1. Uninformative Features are Harmful

Conclusions

- ► (NN-)classification in high dimensions becomes difficult ...
- ... if most of the dimensions contain just noise (leading to noise in the computed distances)

Remark

The same holds for all classifiers: Uninformative features cause Overfitting!

Example: Titanic Dataset

- Decision tree accuracy (5-fold-crossvalidation on training set)
- We add uninformative features $\sim U[0,1]$ to the data
- We set max_depth=10 (the effect grows with max_depth)

# noise features	0	10	100
accuracy (%)	77.6	73.7	72.5

2. Features should not Dominate

⊁

Nearest Neighbors (NN)

- Will NN-classification work in this example?
- Problem: The feature "price" dominates the similarity measure!

	price	mile- age	eco- friendly
Prof. Ulges' car	14.000	5,6	1
Prof. Ulges' wives' car	70.000	11,2	0
Prof. Ulges' wives' 2. car	80.000	6,9	?

Approach: Feature Normalization

- ▶ Let x₁,..., x_n be a features' (sorted) values in the training data
- Approach 1: Min-Max-Normalization

$$x'_i = (x_i - x_1)/(x_n - x_1) \in [0, 1]$$

Approach 2: Standardization

$$x_i' = (x_i - ar{x})/s$$
 // with mean $ar{x}$ and standard deviation s

Approach 3: Whitening

⊁

Let $X_1, ..., X_d$ be normally distributed random variables. We subsume them to a **random vector X** := $(X_1, ..., X_d)$.

Definition (Multivariate Normal Distribution)

Let $\mu \in \mathbb{R}^d$ be a vector and $\Sigma \in \mathbb{R}^{d \times d}$ a quadratic matrix. The distribution of a random vector $\mathbf{X} = (X_1, ..., X_d)$ with density

$$p(\mathbf{x}; \mu, \Sigma) = rac{1}{(2\pi)^{rac{d}{2}} |\Sigma|^{rac{1}{2}}} \cdot e^{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

is called the multivariate normal distribution $\mathcal{N}(\mathbf{x}; \mu, \Sigma)$.

Example

Example Visualization in 2D

⊁

As an example, we visualize the bivariate (2D) normal distribution

 μ is the density's maximum. Changing μ leads to a shift of the density.

$$\mu = (2,3) \rightarrow \mu = (3,1)$$

 Changing values on Σ's diagonal leads to a re-scaling

$$egin{array}{ll} \Sigma = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}
ightarrow \ \Sigma' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Visualization in 2D

- Values Σ_{ij} off Σ's diagonal (i.e., i ≠ j) are the covariances between variables X_i and X_j.
- We distinguish three cases:
 - $\Sigma_{ij} = 0$ (X_i and X_j are uncorrelated)
 - $\Sigma_{ij} > 0$ (positive correlation between X_i and X_j)
 - $\Sigma_{ij} < 0$ (negative correlation between X_i and X_j)

 $\boldsymbol{\Sigma}_{12}=\boldsymbol{0}$

 $\Sigma_{12}>0$

 $\Sigma_{12} < 0$

The Multivariate Normal Distribution: Parameters

- We call μ the center of the distribution, and Σ its covariance matrix. Σ determines the distribution's shape.
- Σ is positive semi-definite and symmetric.
- The diagonal contains the variances of X's dimensions:

$$\Sigma_{ii} = Var(X_i) \Big(=: \sigma_i^2 \Big)$$

In case the random variables X₁,..., X_d are independent,
 Σ is a diagonal matrix:

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & \sigma_d^2 \end{pmatrix}$$

*

Definition (Whitening Transform)

Let $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \in \mathbb{R}^d$ be a training set with covariance matrix Σ with eigenvalues $\lambda_1, ..., \lambda_d$ and eigenvectors $\mathbf{p}_1, ..., \mathbf{p}_d$. We define the $d \times d$ matrices

$$D^{-\frac{1}{2}} := Diag(\frac{1}{\sqrt{\lambda_1}}, \frac{1}{\sqrt{\lambda_2}}, ..., \frac{1}{\sqrt{\lambda_d}}) \quad and \quad P = \left(\mathbf{p}_1 \ \mathbf{p}_2 \ ... \ \mathbf{p}_d\right)$$

Then, we call the following transformation a whitening:

$$\mathbf{x}' := D^{-\frac{1}{2}} \cdot P \cdot \mathbf{x}$$

Illustration

Feature Normalization: Whitening

Remarks

- The whitening transform produces data with covariance matrix I (= the identity matrix):
 - the variance along each axis is 1
 - all correlations are 0 (the axes are decorrelated)
- A proof will follow later (see PCA)

3. Interdependency Features \Leftrightarrow Model

?

Food for Thought

Correct? "We need to standardize when using a nearest neighbors model but not when using a decision tree." 3. Interdependency Features ⇔ Model image from [?] Example: Online-Shop

- Goal: Predict whether a product in your shop will be bought
- Features

 $x_1 :=$ the product's **price**

 $x_2 :=$ the product's **average price**

over other many other shops

Do it Yourself

- Sketch the data in feature space.
- What works better: decision trees or a linear classifier?
- How can we resolve the problem?

3. Interdependency Features \Leftrightarrow Model image from [?]

Outline

1. Feature Properties

- 2. Three Basic Techniques
- 3. Features for Images: Filters
- 4. Features for Images: Local Features
- 5. Features for Text

Image Features: Overview

We can view images as signals:

```
Definition (Signal (1D and 2D))
Given M \in \mathbb{N}^+, we call
                                s: \mathbb{Z} \to \{1, ..., M\}
a (discrete) 1D signal, and
                             s: \mathbb{Z} \times \mathbb{Z} \to \{1, ..., M\}
a (discrete) 2D signal.
```

- Examples: digital audio signals (1D) and images (2D)
- Feature extraction for images borrows methods from signal processing

Signals and Filters

A filter is a mapping T that transforms a (1D or 2D) signal s into another signal s':

Example: Silence Detection

$$s(t) \mapsto \left\{ \begin{array}{c} s(t) & \text{if } |s(t)| \ge c \\ 0 & \text{else} \end{array} \right.$$
Filter T

Example: 2D Translation $s(x, y) \mapsto s(x + c_x, y + c_y)$

FIR Filters

We can define many filters by **linear**, mask-based operations. These are called **finite impulse response (FIR) filters**:

```
Definition (FIR Filter (1D))
Let s be a (1D) signal, M \in \mathbb{N} and
(w_{-M}, w_{-M+1}, ..., w_{-1}, w_0, w_1, ..., w_M)
```

be a filter mask. Then, the following filter is a finite impulse response filter:

$$s(t)\mapsto \sum_{ au=-M}^M s(t- au)\cdot w_ au$$

Remarks

- The transformation with a FIR filter is called a convolution!
- The filter mask is also called a kernel.

Example 1: $(w_{-2}, w_{-1}, w_0, w_1, w_2) = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$

Remarks

By varying the size of the mask, we obtain a stronger/weaker smoothing

Example 2

This filter approximates the signal's derivative

FIR Filters (2D)

We define FIR filters for 2D:

```
Definition (FIR Filter (2D))
Let s be a (2D) signal, M \in \mathbb{N}, and
                                    \begin{pmatrix} w_{-M,-M} & \dots & w_{-M,0} & \dots & w_{-M,M} \\ \dots & & & & & \\ w_{0,-M} & \dots & w_{0,0} & \dots & w_{0,M} \\ \dots & & & & \\ w_{M,-M} & \dots & w_{M,0} & \dots & w_{M,M} \end{pmatrix}
be a filter mask. Then, the following filter is a finite impulse response filter:
                                 s(x,y)\mapsto \sum_{c=-M}^{M}\sum_{\lambda=-M}^{M}s(x-\xi,y-\lambda)\cdot w_{\xi,\lambda}
```

FIR Filters (2D)

- We place the mask at every position of the image
- We compute the weighted sum of the pixel intensities, weighted by the mask's values

2D FIR Filters: Example 1

⊁

The mean filter blurs the input image

2D FIR Filters: Example 2

What do these Filters do?

$$\begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

These are the **Sobel filters**: They are commonly used to compute the partial derivatives $\frac{\partial s(x,y)}{\partial x}$, $\frac{\partial s(x,y)}{\partial y}$ of an image (which indicate the **edges** of an image)

Edges and the Gradient

- Edges are characterized by abrupt changes in intensity
- Edges have a local orientation in each pixel
- We can measure edges by properties of the gradient (based on the images' partial derivatives)

The gradient

$$abla s(x,y) = \Big(rac{\partial s(x,y)}{\partial x}, rac{\partial s(x,y)}{\partial y}\Big)$$

The gradient's norm

$$G = ||\nabla s(x,y)|| = \sqrt{\left(\frac{\partial s(x,y)}{\partial x}\right)^2 + \left(\frac{\partial s(x,y)}{\partial y}\right)^2}$$

The gradient's angle

$$\alpha = \operatorname{atan}\left(\frac{\partial s(x, y)}{\partial x}, \frac{\partial s(x, y)}{\partial y}\right)$$

The Gradient: Example

$$\frac{\partial s(x,y)}{\partial x} \approx 50, \frac{\partial s(x,y)}{\partial y} \approx 0 \qquad \frac{\partial s(x,y)}{\partial x} \approx 0$$
$$||\nabla s(x,y)|| \approx \sqrt{50^2 + 0^2} = 50 \qquad ||\nabla s(x,y)|$$
$$\alpha = atan(0,50) = 0^{\circ} \qquad \alpha = atan(0,50)$$

$$\frac{\partial s(x,y)}{\partial x} \approx -40, \frac{\partial s(x,y)}{\partial y} \approx 40$$
$$||\nabla s(x,y)|| \approx \sqrt{(-40)^2 + 40^2} \approx 56$$
$$\alpha = atan(-40,40) = -135^{\circ}$$

The Gradient: Properties

Remarks

- The gradient always points into the direction of the strongest increase in intensity
- The gradient's norm ||s(x, y)|| corresponds to the strength of the edge

Outline

- 1. Feature Properties
- 2. Three Basic Techniques
- 3. Features for Images: Filters
- 4. Features for Images: Local Features
- 5. Features for Text

Local Features: Motivation

- Often, we are interested only in a certain part of the image
- Example: Object recognition

Challenges

The object's representation changes due to...

- illumination (brightness, position of light source, shadows, ...)
- camera position and object pose
- occlusion and background (also called "clutter")
- Variations of objects within the class ("intra-class variaton")

Local Features: Motivation[?]

Key Idea: Even when images from the same class are not **globally** similar, they share certain **local characteristics**

Approach 1: Hand-engineer Local Features (here)

- state-of-the-art until 2011 (and still used frequently today)
- SIFT, SURF, HoG, Canny, ORB, ...

Approach 2: Learn Local Features (later)

- state-of-the-art since 2011
- ► Convolutional Neural Networks (CNNs) → later

Some (Hand-engineered) Local Features image from [?]

- edges
- corners
- blobs (here)

Local Features: Matching image from [7]

After extracting local features, we *match* them to recognize objects

Local Features: Matching (Formalization)

⊁

Simple Matching Algorithm

- 1. For each training image, **detect local features** and describe them by **local feature vectors**, $f_1, ..., f_n$
- Do the same for the test image, obtaining local feature vectors f'_1, ..., f'_m
- Matching: Perform a nearest neighbor search, i.e. for each test feature, f'_i, find the closest training feature vector f_{nn(j)}
- 4. **Reasoning**: Based on the resulting matches, make a decision (for example, which object is visible)

Remarks

- There are lots of improvements (speed-up of neighbor search, plausibility checks by feature positions, ...)
- Key Questions
 - How do we detect local regions of interest?
 - How do we describe their appearance?

Local Feature Detection: The DoG-Filter

Definition (The DoG Filter)

Let σ_1 , σ_2 be standard deviations with $\sigma_1 > \sigma_2$. Then, we call the 2D filter with

$$w_{\xi,\lambda} = \underbrace{\frac{1}{\sigma_1 \cdot \sqrt{2\pi}} exp\left(-\frac{\xi^2 + \lambda^2}{2\sigma_1^2}\right)}_{\mathcal{N}(\xi,\lambda;\sigma_1)} - \underbrace{\frac{1}{\sigma_2 \cdot \sqrt{2\pi}} exp\left(-\frac{\xi^2 + \lambda^2}{2\sigma_2^2}\right)}_{\mathcal{N}(\xi,\lambda;\sigma_2)}$$

a Difference-of-Gaussians (DoG) filter.

What does this filter do?

The DoG-Filter: Illustration image from [?]

- The DoG filter approximates the so-called Mexican Hat (aka "Laplacian-of-Gaussians") operator
- The DoG filter detects blobs (dark regions surrounded by a bright background)

DoG Detection Algorithm

- We choose parameters σ_2, σ_1 (often, $\sigma_1 \approx 1.6 \cdot \sigma_2$)
- We filter the image with the resulting DoG filter
- We obtain a **response image** r(x, y)
- ► We choose local extrema (maxima and minima) of the response (where |r(x, y)| > t)
- These are the centers of our blobs!

Question

How do we choose the size of the blobs to detect?

Feature Detection: Scale Invariance

- ⊁
- ► Modern feature detectors come with a free scale parameter
- For DoG: the scale σ_2 (from which we compute σ_1)
- This parameter determines if our detector localizes fine, small structures or coarse, wide-spread structures

 $\sigma_2 = 0.1$

$$\sigma_2 = 1.1$$

 $\sigma_2 = 3.3$

 $\sigma_2 = 4.4$

Scale-invariant Feature Detection: Approach

- We **repeat** detection on **multiple scales** (by varying σ_2)
- Algorithmically, instead of increasing σ₂, we can just
 scale down the input image and keep σ₂ fixed
- Instead of a single two-dimensional response image, we obtain a pyramid of response images, the scale space
- We now search the pyramid for local extrema of the filter response

Scale-invariant Features: Example

Local Features: Feature Description

⊁

Question 1: Feature Detection \checkmark

Question 2: Feature Description

What feature extraction do we apply to describe the appearance of local regions?

 In the following: One very popular approach called SIFT (Scale-invariant Feature Transform) [?] (> 37K citations)

SIFT Features

SIFT uses two steps to describe a local region of interest (ROI)

- 1. Region normalization
- 2. Description by gradient histograms

Step 1: Region Normalization

- Scale all ROIs to a standard-size square
- Determine the dominant edge direction α in the square
- Rotate the region such that $\alpha = 0^{\circ}$

SIFT Features image from [?]

⊁

Step 2: Description by Gradient Histograms

- Subdivide the (normalized) ROI into 4×4 windows
- For each window, store a normalized histogram of the 8 (discretized) gradient orientations
- ► Each pixel (x, y)'s gradient vector ∇s(x, y) adds a bit of weight to its direction in the histogram. The weight is determined by the edge strength ||∇s(x, y)||!
- Concatenate the 4 × 4 histograms (each 8-dimensional) into a 128-dimensional local feature vector

SIFT Features

Step 2: One more Improvement

- So far, each pixel contributes to the histogram of 'its' subwindow
- This is not robust to small shifts: Some pixels end up in a different subwindow, and the feature may change strongly
- Improvement: Each pixel contributes a bit to each of its 4 neighbor subwindows
- Weights are determined by bilinear interpolation

Local Features: Do-it-Yourself

We have learned of local features by DoG blob detection and gradient-based SIFT description. Those are usually simply called **SIFT Features**.

To which of these transformations are SIFT features invariant/robust?

- rotation
- illumination changes
- (small) translation
- non-affine distorsion

Outline

- 1. Feature Properties
- 2. Three Basic Techniques
- 3. Features for Images: Filters
- 4. Features for Images: Local Features
- 5. Features for Text

Some Remarks regarding Text Features

ML Applications involving Text

- Information extraction / part-of-speech tagging
- Sentiment analysis
- Spam filtering
- Information retrieval
- Recommendation (of news, videos, movies, jobs, ...)

Remarks

...

- In this chapter, we will have a look at some simple text features, including the common bag-of-words features
- The focus will still be on **simple text statistics**
- ► A very useful reference: Python's nltk module!

Text Features: Segmentation

⊁

- First Question: What is a "term"?
- Text segmentation into terms is not a trivial problem

Example	Approach
Germany's chancellor	rule-based recognition
3/20/91 vs. Mar 12, 1991	rule-based recognition
(0049) 611/9495-1215	rule-based recognition
San Francisco	statistical methods
Lebensversicherungsgesellschaft	compound splitter (dictionary-
vs. Malerei	based vs. statistical methods)

Simply Splitting at spaces is not 100% accurate but common.

Text Segmentation image from [?]

Code Example: Python

 This code uses regular expressions, which allow us to search a wide range of text patterns in strings

Operator	Behavior
	Wildcard, matches any character
^abc	Matches some pattern abc at the start of a string
abc\$	Matches some pattern abc at the end of a string
[abc]	Matches one of a set of characters
[A-Z0-9]	Matches one of a range of characters
ed ing s	Matches one of the specified strings (disjunction)
*	Zero or more of previous item, e.g., a*, [a-z]* (also known as Kleene Closure)
+	One or more of previous item, e.g., a+, [a-z]+
?	Zero or one of the previous item (i.e., optional), e.g., a?, [a-z]?
{n}	Exactly n repeats where n is a non-negative integer
{n,}	At least n repeats
{,n}	No more than n repeats
{m,n}	At least m and no more than n repeats
a(b c)+	Parentheses that indicate the scope of the operators

```
>>> text = 'That U.S.A. poster-print costs $12.40...'
>>> pattern = r'''(?x)  # set flag to allow verbose regexps
... ([A-Z]\.)+  # abbreviations, e.g. U.S.A.
... | \w+(-\w+)*  # words with optional internal hyphens
... | \$?\d+(\.\d+)?%?  # currency and percentages, e.g. $12.40, 82%
... | \.\.\  # ellipsis
... | [][.,;"'?():-_`]  # these are separate tokens
... '''
>>> nltk.regexp_tokenize(text, pattern)
['That', 'U.S.A.', 'poster-print', 'costs', '$12.40', '...']
```

Text Features: Bag-of-Words

- ▶ We define a **vocabulary** of terms *t*₁, ..., *t_m*
- Each document D is described by a vector $\mathbf{x} = (x_1, ..., x_m)$
- ▶ The entries x_i indicate the importance of term t_i for D
- ▶ **x** is very **sparse** (only terms appearing in D get a weight \neq 0)

Popular Term Weightings (more in [?], Chapter 6)

- $x_i := \#$ of occurrences of term t_i in D ("term frequency" tf_i)
- $\blacktriangleright x_i := log(tf_i)$
- ► x_i := 1 (0) if term t_i appears (not) in the document
- x_i := tf_i, weighted such that frequent terms get less weight (tf-idf)
- x_i := Okapi BM25 weights

Text Features: Normalization

- We also normalize text to increase robustness to flexion and sentence structure
- ▶ **Step 1**: Lower-casing (Sometimes → sometimes)
- **Step 2**: Stemming = reducing words to their stem

Stemming: Methods

- Rule-based Methods
 - Example rule: *t \rightarrow * (geht \rightarrow geh)
 - Example rule: *en \rightarrow * (gehen \rightarrow geh)
- Dictionary-based Methods
 - Example: stem['ging'] = 'geh'
 - popular for languages with strong flexion (like German)

Stemming: Code Example


```
def naive_stem (word):
1
       regexp = r'^(.*?)(ing|ly|ed|ious|ies|ive|es|s|ment)?'
2
       stem, suffix = re.findall(regexp, word)[0]
3
       return stem
4
5
    >>> tokens = ['women', 'swords', 'is', 'lying']
6
7
    >>> [naive_stem(t) for t in tokens]
8
9
       ['women', 'sword', 'i', 'ly']
                                          // naive
10
11
    >>> [nltk.WordNetLemmatizer().lemmatize(t)
12
         for t in tokens]
13
14
       ['woman', 'sword', 'is', 'lying'] // dict-based
15
16
    >>> [nltk.PorterStemmer().stem(t)
17
         for t in tokens]
18
19
       ['women', 'sword', 'is', 'lie'] // rule-based
20
```

Text Features: Synsets image from [?]

Can we achieve invariance to synonyms?

"What a beautiful day!" vs. "What a lovely day!"

- A frequent approach are thesauri: A thesaurus is a collection of terms, connected by (pre-defined) relations
- Typical relations
 - synonyms (beautiful vs. lovely)
 - antonym (beautiful vs. ugly)
 - generalization/specialization (a boat is a vehicle)
- Synonyms form so-called synsets

Synsets: Python Example

```
>>> from nltk.corpus import wordnet as wn
1
     >>> wn.synsets("dog")
2
3
        [Synset('dog.n.01'),
4
        Synset ('frump.n.01'),
5
        Synset('dog.n.03'),
6
        Synset('cad.n.01'),
7
        Synset ('frank.n.02'),
8
        Synset('pawl.n.01'),
9
        Synset('andiron.n.01'),
10
        Synset('chase.v.01')]
11
12
     >>> for synset in wn.synsets("dog"):
13
             print "dog =", synset.definition
14
15
        dog = a member of the genus Canis ...
16
        dog = a dull unattractive unpleasant woman
17
        dog = informal term for a man
18
        dog = a smooth-textured sausage ...
19
        dog = metal supports for logs in a fireplace
20
        dog = go after with the intent to catch
21
22
         . . .
```

From Thesauri to Ontologies image from [?]

- We can extend the concept of a thesaurus to ontologies
- An ontology can be thought of as a generalized knowledge base containing objects and relations between them
- Ontologies can be combined by linking their objects

Example: The DBPedia Project

- 20.8 mio. "things", crawled from Wikipedia infoboxes
- > 500 mio. "facts"
- representation by RDF (Resource Description Framework)
- allows smarter search ("give me all cities in New Jersey with more than 10,000 inhabitants")

```
{{Infobox Town AT
  ane = Innsbruck
  image_coa = InnsbruckWappen.png |
  image_map = Karte-tirol-I.png |
  regbzk = [[Statutory city]] |
       tion = 117,342
       tion_as_of = 2006
  pop_dens = 1,119 |
        104.9
       ion = 574
      eg = 47
  lon de\sigma = 11
  on min = 23
  lon_hen - E
  postal_code = 6010-6080
  area code = 0512 |
  licence = I
 navor - Hilde Zach
 website = [http://innsbruck.at]
```


Text Features: N-Grams

So far, we have neglected the order of words in the document "I can not believe it – What a cool video!" vs. "This video is not cool – What a..."

A simple statistical approach are n-grams: Instead of segmenting text into single tokens, we segment it into subsequences of n tokens each!

In the Example

bag-of-words feature

$$\left\{ \ ({\it This:}\ 1),\ ({\it video:}\ 1),\ ({\it is:}\ 1),\ ({\it cool:}\ 1),\ ...\
ight\}$$

n-gram feature

{ (This video: 1), (video is: 1), (is not: 1), (not cool: 1), ... }

Problem: Features get (even more) high-dimensional!

References I

- Affine Covariant Features Dataset. http://www.robots.ox.ac.uk/~vgg/research/affine/ (retrieved: Oct 2016).
- [2] Body Language: What we're really saying. https://capitaleap.org/blog/2013/06/12/body-language-what-were-really-saying/ (retrieved: Oct 2016).
- [3] Did you blink? The structured Web just arrived. http://www.mkbergman.com/354/did-you-blink-the-structured-web-just-arrived/ (retrieved: Oct 2016).
- [4] picture shared by Christoph Lampert. contact: http://pub.ist.ac.at/~chl/.
- [5] Studie: "Kreditschwemme" kommt beim Mittelstand nicht an . http://www.wirtschaft.com/studie-kreditschwemme-kommt-beim-mittelstand-nicht/ (retrieved: Oct 2016).
- [6] The USC-SIPI Image Database. http://sipi.usc.edu/database/ (retrieved: Oct 2016).
- Thesaurus Quotes. http://quotesgram.com/img/thesaurus-quotes/3138560/ (retrieved: Oct 2016).
- [8] Wang, R.: Computer Image Processing and Analysis (E161) Course (Harvey Mudd College). http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html (retrieved: Oct 2016).
- Yes, this is Megan Fox. like, everywhere on the internet... (retrieved: Oct 2016).
- [10] Shrek, 2001.

References II

- [11] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O'Reilly Media, Inc., 2009.
- [12] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision, 60(2):91–110, 2004.
- [13] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University Press, 2008.