
Machine Learning
– winter term 2016/17 –

Chapter 03:
Features

Prof. Adrian Ulges
Masters “Computer Science”

DCSM Department
University of Applied Sciences RheinMain

3. November 2016

1

Outline

1. Feature Properties

2. Three Basic Techniques

3. Features for Images: Filters

4. Features for Images: Local Features

5. Features for Text

2

Introduction image from [?]

I Often, feature extraction is more important to the success
of an ML system than the model/classifier!

We will
I ... discuss some generic properties of good features.
I ... present three basic techniques in feature engineering.
I ... look at some features for images and text.

3

Features

I Features are formal representations of real-world objects

I We can think of them as attribute-value pairs

color = silver, // categorial feature

rating = ****, // ordinal feature

mileage = 20.8, // numerical feature

price development = (34.457, 32.189, 29.745)

// vector feature

I The term “feature” can refer to a single value (such as
color or mileage), or to the object’s whole feature vector.

I Feature vectors are often high-dimensional
(like the pixels of an image or the terms of a text)

I In the following, we will discuss mostly numerical features
(we can turn all features into numerical ones by
histogramming + one-hot encoding)

4

Features: Example

I Use the raw data as features? → Example: OCR

(240, 154, 147, …,
 251, 161, 76, …,
 …
 … , 254)

10x9 pixels =
900-dimensional

feature vector

I In many cases we can do better: Cherrypicking the ’right’
features makes the classifier’s job easier.

Remarks

I Modern deep learners (later) tend to operate on the raw
data and learn their features themselves.

Key Question

What are properties of good features?
5

Objective 1: Compactness

“Feature extraction is a special form of
dimensionality reduction”

(en.wikipedia.org)

I We require features to be compact
I ... for efficiency reasons
I ... for accuracy reasons (curse of dimensionality)

I Example: Using raw pixel values is inefficient
(3 megapixels = 3,000,000 features → subsample the image)

I We will address other forms of dimensionality reduction later

6

Objective 2: Invariance

Invariance in Computer Science

I An invariant is a property
that always evaluates to the
same value, before and
after applying a sequence of
operations

1

2 int x := 10;
3 {x==10}
4 foo(x);
5 {x==10}
6

7

8

I Invariants are used to prove the absence of side effects
and the correctness of algorithms

Invariance of Features in ML

I ... is basically the same: We call a feature f invariant (or
robust) with respect to a transformation T if the feature does
not change (or does not change significantly) when
transforming the input object:

f (T (x)) = f (x)
(

or f (T (x)) ≈ f (x)
)

7

Invariance: Example image from [?]

The feature “color histogram” is invariant with respect
to flipping the input image

f

f

T

8

Invariance: Sample Transformations T images from [?] [?]

In machine learning, we want to be invariant to lots of
transformations

Machine Learning on Images

I illumination

I perspective, pose

I geometric transformations

I noise, compression artifacts

Machine Learning on Text

I language

I wording (synonyms)

Other Machine Learning

I inflation (in credit scoring)

I user rating level
(in recommenders)

I ...

9

Strategies to achieve Invariance

Approach 1: Normalization

I Correct for the effect of T by normalizing

I Example: normalize for inflation

I Example: brightness normalization

Approach 2: Virtual Samples

I Generate extra training samples by
applying T to the existing ones

I Example: OCR training samples

I Example: Kinekt body pose recognition

Approach 3: Integration

I Apply all possible variations of T
to the input object and average the resulting features

f inv (x) =
1

|T |

∫
T∈T

f (T (x)) dT

10

Objective 3: Discriminativity
I Features should be discriminative: They should allow us to

distinguish objects from different classes
I Discriminativity and invariance are often hard to combine
I Example (maximal invariance, minimal discriminativity)

f (x) = 42 ∀x

I Example (should we go for invariance or discriminativity?)

f () = f ()?

Key Questions

I How do we find features that are both robust/invariant
and discriminative?

I With respect to which transformations T
should we be robust?

I Are all transformations equally likely?

11

Outline

1. Feature Properties

2. Three Basic Techniques

3. Features for Images: Filters

4. Features for Images: Local Features

5. Features for Text

12

Features: Three Basic Techniques

1. Feature Selection

I Uninformative features make ML problems harder.

2. Feature Normalization

I Features should not dominate.

3. Feature Transformation

I There is an interdependency between features
and ML model.

13

1. Uninformative Features are Harmful

I ML problems are often high-dimensional
(with hundreds or thousands of features)

I Which features are informative for our problem?
(we will try to learn them → later)

Example: Nearest Neighbors → the “curse of dimensionality”

14

1. Uninformative Features are Harmful

Conclusions
I (NN-)classification in high dimensions becomes difficult ...

I ... if most of the dimensions contain just noise
(leading to noise in the computed distances)

Remark
I The same holds for all classifiers: Uninformative features

cause Overfitting!

Example: Titanic Dataset

I Decision tree accuracy (5-fold-crossvalidation on training set)

I We add uninformative features ∼ U[0, 1] to the data

I We set max depth=10 (the effect grows with max depth)

noise features 0 10 100

accuracy (%) 77.6 73.7 72.5

15

2. Features should not Dominate

Nearest Neighbors (NN)

I Will NN-classification work
in this example?

I Problem: The feature
“price” dominates
the similarity measure!

Approach: Feature Normalization

I Let x1, ..., xn be a features’ (sorted) values in the training data

I Approach 1: Min-Max-Normalization

x ′i = (xi − x1)/(xn − x1) ∈ [0, 1]

I Approach 2: Standardization

x ′i = (xi − x̄)/s // with mean x̄ and standard deviation s

16

mile-
ageprice

Prof. Ulges'
car

Prof. Ulges'
wives' car

14.000 5,6

70.000 11,2
Prof. Ulges'
wives' 2. car 80.000 6,9

eco-
friendly

1

0

?

Approach 3: Whitening

Let X1, ...,Xd be normally distributed random variables.
We subsume them to a random vector X := (X1, ...,Xd).

Definition (Multivariate Normal Distribution)

Let µ ∈ Rd be a vector and Σ ∈ Rd×d a quadratic matrix. The

distribution of a random vector X = (X1, ...,Xd) with density

p(x;µ,Σ) =
1

(2π)
d
2 |Σ|

1
2

· e−
1
2 (x−µ)T Σ−1(x−µ)

is called the multivariate normal distribution N (x;µ,Σ).

Example

17

Example Visualization in 2D

As an example, we visualize the bivariate (2D) normal distribution

I µ is the density’s
maximum. Changing
µ leads to a shift of
the density.

µ = (2, 3)→
µ = (3, 1)

I Changing values on
Σ’s diagonal leads to
a re-scaling

Σ =

(
3 0
0 1

)
→

Σ′ =

(
1 0
0 2

)
18

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

Visualization in 2D

I Values Σij off Σ’s diagonal (i.e., i 6= j) are the
covariances between variables Xi and Xj .

I We distinguish three cases:
I Σij = 0 (Xi and Xj are uncorrelated)
I Σij > 0 (positive correlation between Xi and Xj)
I Σij < 0 (negative correlation between Xi and Xj)

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

0 1 2 3 4 5
X1

0

1

2

3

4

5

X2

Σ12 = 0 Σ12 > 0 Σ12 < 0

19

The Multivariate Normal Distribution: Parameters

I We call µ the center of the distribution, and Σ its
covariance matrix. Σ determines the distribution’s shape.

I Σ is positive semi-definite and symmetric.

I The diagonal contains the variances of X’s dimensions:

Σii = Var(Xi)
(

=: σ2
i

)
I In case the random variables X1, ...,Xd are independent,

Σ is a diagonal matrix:

Σ =

σ2

1 0 ... 0
0 σ2

2 0
0 0
0 ... 0 σ2

d

20

Feature Normalization: Whitening

Definition (Whitening Transform)

Let x1, x2, ..., xn ∈ Rd be a training set with covariance matrix Σ with

eigenvalues λ1, ..., λd and eigenvectors p1, ..., pd . We define the d × d matrices

D−
1
2 := Diag(

1√
λ1

,
1√
λ2

, ...,
1√
λd

) and P =
(

p1 p2 ... pd

)
Then, we call the following transformation a whitening:

x′ := D−
1
2 · P · x

Illustration

4 2 0 2 4
X1

4

2

0

2

4

X2

4 2 0 2 4
X1

4

2

0

2

4

X2

4 2 0 2 4
X1

4

2

0

2

4

X2
original standardized (see above) whitened

21

Feature Normalization: Whitening

Remarks

I The whitening transform produces data with
covariance matrix I (= the identity matrix):

I the variance along each axis is 1
I all correlations are 0 (the axes are decorrelated)

I A proof will follow later (see PCA)

22

3. Interdependency Features ⇔ Model

Food for Thought

I Correct? “We need to standardize when using a nearest
neighbors model but not when using a decision tree.”

23

3. Interdependency Features ⇔ Model image from [?]

Example: Online-Shop

I Goal: Predict whether a product
in your shop will be bought

I Features
x1 := the product’s price

x2 := the product’s average price

over other many other shops

Do it Yourself

I Sketch the data in feature space.

I What works better: decision trees or a linear classifier?

I How can we resolve the problem?

24

3. Interdependency Features ⇔ Model image from [?]

25

Outline

1. Feature Properties

2. Three Basic Techniques

3. Features for Images: Filters

4. Features for Images: Local Features

5. Features for Text

26

Image Features: Overview

We can view images as signals:

Definition (Signal (1D and 2D))

Given M ∈ N+, we call

s : Z→ {1, ...,M}

a (discrete) 1D signal, and

s : Z× Z→ {1, ...,M}

a (discrete) 2D signal.

I Examples: digital audio signals (1D) and images (2D)

I Feature extraction for images borrows methods
from signal processing

27

Signals and Filters

A filter is a mapping T that transforms a (1D or 2D) signal s
into another signal s ′:

Example: Silence Detection

s(t) 7→
{

s(t) if |s(t)| ≥ c
0 else

Filter T

Example: 2D Translation
s(x , y) 7→ s(x + cx , y + cy)

Filter T

28

FIR Filters

We can define many filters by linear, mask-based operations.
These are called finite impulse response (FIR) filters:

Definition (FIR Filter (1D))

Let s be a (1D) signal, M ∈ N and

(w−M ,w−M+1, ...,w−1,w0,w1, ...,wM)

be a filter mask. Then, the following filter is a finite impulse

response filter:

s(t) 7→
M∑

τ=−M
s(t − τ) · wτ

Remarks

I The transformation with a FIR filter is called a convolution!

I The filter mask is also called a kernel.
29

Example 1: (w−2,w−1,w0,w1,w2) = (1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5)

Filter T
(M=2)

Remarks
By varying the size of the mask, we obtain a stronger/weaker
smoothing

Filter T
(M=5)

Filter T
(M=2)

30

Example 2

I We define (w−1,w0,w1) = (1, 0,−1)

s(t) 7→
1∑

τ=−1

s(t − τ) · w(τ) = s(t + 1)− s(t − 1)

I This filter approximates the signal’s derivative

Filter T

31

FIR Filters (2D)

We define FIR filters for 2D:

Definition (FIR Filter (2D))

Let s be a (2D) signal, M ∈ N, and
w−M,−M ... w−M,0 ... w−M,M

...

w0,−M ... w0,0 ... w0,M

...

wM,−M ... wM,0 ... wM,M

be a filter mask. Then, the following filter is a finite impulse response filter:

s(x , y) 7→
M∑

ξ=−M

M∑
λ=−M

s(x − ξ, y − λ) · wξ,λ

32

FIR Filters (2D)
I We place the mask at every position of the image
I We compute the weighted sum of the pixel intensities,

weighted by the mask’s values

33

2D FIR Filters: Example 1

The mean filter blurs the input image
w−2,−2 w−2,−1 w−2,0 w−2,1 w−2,2

w−1,−2 w−1,−1 w−1,0 w−1,1 w−1,2

w0,−2 w0,−1 w0,0 w0,1 w0,2

w1,−2 w1,−1 w1,0 w1,1 w1,2

w2,−2 w2,−1 w2,0 w2,1 w2,2

 =
1

25
·

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Filter T

34

2D FIR Filters: Example 2

What do these Filters do?1 0 −1
2 0 −2
1 0 −1

 1 2 1
0 0 0
−1 −2 −1

These are the Sobel filters: They are commonly used to compute

the partial derivatives ∂s(x ,y)
∂x , ∂s(x ,y)

∂y of an image (which indicate
the edges of an image)

Filter T

35

Edges and the Gradient
I Edges are characterized by abrupt changes in intensity
I Edges have a local orientation in each pixel
I We can measure edges by properties of the gradient

(based on the images’ partial derivatives)

The gradient

∇s(x , y) =
(∂s(x , y)

∂x
,
∂s(x , y)

∂y

)
The gradient’s norm

G = ||∇s(x , y)|| =

√(∂s(x , y)

∂x

)2
+
(∂s(x , y)

∂y

)2

The gradient’s angle

α = atan
(∂s(x , y)

∂x
,
∂s(x , y)

∂y

)
36

The Gradient: Example

∂s(x , y)

∂x
≈ 50,

∂s(x , y)

∂y
≈ 0

||∇s(x , y)|| ≈
√

502 + 02 = 50

α = atan(0, 50) = 0◦

∂s(x , y)

∂x
≈ −40,

∂s(x , y)

∂y
≈ 40

||∇s(x , y)|| ≈
√

(−40)2 + 402 ≈ 56

α = atan(−40, 40) = −135◦

37

The Gradient: Properties

Remarks

I The gradient always points into the direction
of the strongest increase in intensity

I The gradient’s norm ||s(x , y)|| corresponds
to the strength of the edge

38

Outline

1. Feature Properties

2. Three Basic Techniques

3. Features for Images: Filters

4. Features for Images: Local Features

5. Features for Text

39

Local Features: Motivation
I Often, we are interested only in

a certain part of the image

I Example: Object recognition

Challenges

The object’s representation
changes due to...

I illumination (brightness,
position of light source,
shadows, ...)

I camera position and object pose

I occlusion and background
(also called “clutter”)

I Variations of objects within the
class (“intra-class variaton”)

40

Local Features: Motivation[?]

Key Idea: Even when images from the same class are not globally
similar, they share certain local characteristics

Approach 1: Hand-engineer Local Features (here)

I state-of-the-art until 2011 (and still used frequently today)

I SIFT, SURF, HoG, Canny, ORB, ...

Approach 2: Learn Local Features (later)

I state-of-the-art since 2011

I Convolutional Neural Networks (CNNs) → later
41

Some (Hand-engineered) Local Features image from [?]

I edges

I corners

I blobs (here)

42

Local Features: Matching image from [?]

After extracting local features, we match them
to recognize objects

43

Local Features: Matching (Formalization)

Simple Matching Algorithm

1. For each training image, detect local features and describe
them by local feature vectors, f1, .., fn

2. Do the same for the test image, obtaining local feature
vectors f ′1 , .., f

′
m

3. Matching: Perform a nearest neighbor search, i.e. for each
test feature, f ′j , find the closest training feature vector fnn(j)

4. Reasoning: Based on the resulting matches, make a decision
(for example, which object is visible)

Remarks

I There are lots of improvements (speed-up of neighbor search,
plausibility checks by feature positions, ...)

I Key Questions
I How do we detect local regions of interest?
I How do we describe their appearance?

44

Local Feature Detection: The DoG-Filter

Definition (The DoG Filter)

Let σ1, σ2 be standard deviations with σ1 > σ2. Then, we call the

2D filter with

wξ,λ =
1

σ1 ·
√

2π
exp
(
− ξ2 + λ2

2σ2
1

)
︸ ︷︷ ︸

N (ξ,λ;σ1)

− 1

σ2 ·
√

2π
exp
(
− ξ2 + λ2

2σ2
2

)
︸ ︷︷ ︸

N (ξ,λ;σ2)

a Difference-of-Gaussians (DoG) filter.

What does this filter do?

45

The DoG-Filter: Illustration image from [?]

I The DoG filter approximates the so-called
Mexican Hat (aka “Laplacian-of-Gaussians”) operator

I The DoG filter detects blobs (dark regions surrounded
by a bright background)

46

DoG Detection Algorithm
I We choose parameters σ2, σ1 (often, σ1 ≈ 1.6 · σ2)
I We filter the image with the resulting DoG filter
I We obtain a response image r(x , y)
I We choose local extrema (maxima and minima) of the

response (where |r(x , y)| > t)
I These are the centers of our blobs!

Question

I How do we choose the size
of the blobs to detect?

47

Feature Detection: Scale Invariance

I Modern feature detectors come with a free scale parameter

I For DoG: the scale σ2 (from which we compute σ1)

I This parameter determines if our detector localizes fine, small
structures or coarse, wide-spread structures

σ2=0.1 σ2=2.2

σ2=4.4σ2=3.3 σ2=5.5

σ2=1.1

48

Scale-invariant Feature Detection: Approach

σ2=0.1

σ2=1.1

σ2=2.2

σ2=4.4

σ2=3.3

σ2=5.5

x

y

scale

Filter response

find local
extremum

σ2=1.3

σ2=1.2

σ2=1.1

I We repeat detection on multiple scales (by varying σ2)
I Algorithmically, instead of increasing σ2, we can just

scale down the input image and keep σ2 fixed
I Instead of a single two-dimensional response image,

we obtain a pyramid of response images, the scale space
I We now search the pyramid for local extrema

of the filter response
49

Scale-invariant Features: Example

50

Local Features: Feature Description

Question 1: Feature Detection X

Question 2: Feature Description

I What feature extraction do we apply to describe the
appearance of local regions?

(-2.5, 17.1, 0.4, ...)

(3.4, 1.5, 104.8, ...)

I In the following: One very popular approach called SIFT
(Scale-invariant Feature Transform) [?] (> 37K citations)

51

SIFT Features

SIFT uses two steps to describe a local region of interest (ROI)

1. Region normalization
2. Description by gradient histograms

Step 1: Region Normalization

I Scale all ROIs to a standard-size square

I Determine the dominant edge direction α in the square

I Rotate the region such that α = 0◦

morph to standard square
by affine transformation A/A'

A'

A R

R'

Rotation R/R'

comparable!not
comparable

(still) not
comparable

52

SIFT Features image from [?]

Step 2: Description by Gradient Histograms

I Subdivide the (normalized) ROI into 4× 4 windows

I For each window, store a normalized histogram
of the 8 (discretized) gradient orientations

I Each pixel (x , y)’s gradient vector ∇s(x , y) adds a bit of
weight to its direction in the histogram. The weight is
determined by the edge strength ||∇s(x , y)||!

I Concatenate the 4× 4 histograms (each 8-dimensional)
into a 128-dimensional local feature vector

53

SIFT Features

Step 2: One more Improvement

I So far, each pixel contributes to the histogram
of ’its’ subwindow

I This is not robust to small shifts: Some pixels end up in a
different subwindow, and the feature may change strongly

I Improvement: Each pixel contributes a bit to each of its 4
neighbor subwindows

I Weights are determined by bilinear interpolation

H1

H3

H2

H4

H2

H4

54

Local Features: Do-it-Yourself

We have learned of local features by DoG blob detection and
gradient-based SIFT description. Those are usually simply called
SIFT Features.
To which of these transformations are SIFT features
invariant/robust?

I rotation

I illumination changes

I (small) translation

I non-affine distorsion

55

Outline

1. Feature Properties

2. Three Basic Techniques

3. Features for Images: Filters

4. Features for Images: Local Features

5. Features for Text

56

Some Remarks regarding Text Features

ML Applications involving Text

I Information extraction / part-of-speech tagging

I Sentiment analysis

I Spam filtering

I Information retrieval

I Recommendation (of news, videos, movies, jobs, ...)

I ...

Remarks

I In this chapter, we will have a look at some simple text
features, including the common bag-of-words features

I The focus will still be on simple text statistics

I A very useful reference: Python’s nltk module!

57

Text Features: Segmentation

I First Question: What is a “term”?
I Text segmentation into terms is not a trivial problem

Example Approach

Germany’s chancellor rule-based recognition

3/20/91 vs. Mar 12, 1991 rule-based recognition

(0049) 611/9495-1215 rule-based recognition

San Francisco statistical methods

Lebensversicherungsgesellschaft
vs. Malerei

compound splitter (dictionary-
based vs. statistical methods)

I Simply Splitting at spaces is not 100% accurate but common.

58

Text Segmentation image from [?]

Code Example: Python

I This code uses regular
expressions, which allow
us to search a wide range
of text patterns in strings

59

Text Features: Bag-of-Words

I We define a vocabulary of terms t1, ..., tm
I Each document D is described by a vector x = (x1, ..., xm)

I The entries xi indicate the importance of term ti for D

I x is very sparse (only terms appearing in D get a weight 6= 0)

Popular Term Weightings (more in [?], Chapter 6)

I xi := # of occurrences of term ti in D (“term frequency” tfi)

I xi := log(tfi)

I xi := 1 (0) if term ti appears
(not) in the document

I xi := tfi , weighted such that
frequent terms get less
weight (tf-idf)

I xi := Okapi BM25 weights

I ...

60

1 ...41 Document D

game of thrones

0 ...10 Document D'

game

of

thrones

feature x' (Document D')

feature x (Document D)

Text Features: Normalization

I We also normalize text to increase robustness
to flexion and sentence structure

I Step 1: Lower-casing (Sometimes → sometimes)

I Step 2: Stemming = reducing words to their stem

Stemming: Methods

I Rule-based Methods
I Example rule: *t → * (geht → geh)
I Example rule: *en → * (gehen → geh)

I Dictionary-based Methods
I Example: stem[’ging’] = ’geh’
I popular for languages with strong flexion (like German)

61

Stemming: Code Example

1 d e f n a i v e s t e m (word) :
2 r e g e x p = r ’ ˆ (. ∗ ?) (i n g | l y |ed| i o u s | i e s | i v e |e s |s |ment) ? ’
3 stem , s u f f i x = r e . f i n d a l l (regexp , word) [0]
4 r e t u r n stem
5

6 >>> t o k e n s = [’women ’ , ’ swords ’ , ’ i s ’ , ’ l y i n g ’]
7

8 >>> [n a i v e s t e m (t) f o r t i n t o k e n s]
9

10 [’women ’ , ’ sword ’ , ’ i ’ , ’ l y ’] // n a i v e
11

12 >>> [n l t k . WordNetLemmatizer () . l emmat ize (t)
13 f o r t i n t o k e n s]
14

15 [’woman ’ , ’ sword ’ , ’ i s ’ , ’ l y i n g ’] // d i c t−based
16

17 >>> [n l t k . PorterStemmer () . stem (t)
18 f o r t i n t o k e n s]
19

20 [’women ’ , ’ sword ’ , ’ i s ’ , ’ l i e ’] // r u l e−based
21

22

62

Text Features: Synsets image from [?]

I Can we achieve invariance to synonyms?

”What a beautiful day!” vs.
”What a lovely day!”

I A frequent approach are thesauri: A thesaurus is a collection
of terms, connected by (pre-defined) relations

I Typical relations
I synonyms (beautiful vs. lovely)
I antonym (beautiful vs. ugly)
I generalization/specialization

(a boat is a vehicle)
I Synonyms form so-called

synsets

63

Synsets: Python Example
1 >>> from n l t k . c o r p u s i m p o r t wordnet as wn
2 >>> wn . s y n s e t s (” dog ”)
3

4 [S y n s e t (’ dog . n . 0 1 ’) ,
5 S y n s e t (’ frump . n . 0 1 ’) ,
6 S y n s e t (’ dog . n . 0 3 ’) ,
7 S y n s e t (’ cad . n . 0 1 ’) ,
8 S y n s e t (’ f r a n k . n . 0 2 ’) ,
9 S y n s e t (’ pawl . n . 0 1 ’) ,

10 S y n s e t (’ a n d i r o n . n . 0 1 ’) ,
11 S y n s e t (’ c h a s e . v . 0 1 ’)]
12

13 >>> f o r s y n s e t i n wn . s y n s e t s (” dog ”) :
14 p r i n t ” dog =” , s y n s e t . d e f i n i t i o n
15

16 dog = a member o f t h e genus C a n i s . . .
17 dog = a d u l l u n a t t r a c t i v e u n p l e a s a n t woman
18 dog = i n f o r m a l term f o r a man
19 dog = a smooth−t e x t u r e d s a u s a g e . . .
20 dog = meta l s u p p o r t s f o r l o g s i n a f i r e p l a c e
21 dog = go a f t e r w i t h t h e i n t e n t to c a t c h
22 . . .
23

24

64

From Thesauri to Ontologies image from [?]

I We can extend the concept of a thesaurus to ontologies

I An ontology can be thought of as a generalized knowledge
base containing objects and relations between them

I Ontologies can be combined by linking their objects

Example: The DBPedia Project

I 20.8 mio. ”things”, crawled
from Wikipedia infoboxes

I > 500 mio. ”facts”

I representation by RDF (Resource
Description Framework)

I allows smarter search (”give me
all cities in New Jersey with more
than 10,000 inhabitants”)

65

Text Features: N-Grams
I So far, we have neglected the order of words in the document

”I can not believe it – What a cool video!” vs.
”This video is not cool – What a...”

I A simple statistical approach are n-grams: Instead of
segmenting text into single tokens, we segment it into
subsequences of n tokens each!

In the Example

I bag-of-words feature{
(This: 1), (video: 1), (is: 1), (cool: 1), ...

}
I n-gram feature{

(This video: 1), (video is: 1), (is not: 1), (not cool: 1), ...
}

I Problem: Features get (even more) high-dimensional!

66

References I
[1] Affine Covariant Features Dataset.

http://www.robots.ox.ac.uk/~vgg/research/affine/ (retrieved: Oct 2016).

[2] Body Language: What we’re really saying.
https://capitaleap.org/blog/2013/06/12/body-language-what-were-really-saying/ (retrieved: Oct
2016).

[3] Did you blink? The structured Web just arrived.
http://www.mkbergman.com/354/did-you-blink-the-structured-web-just-arrived/ (retrieved: Oct
2016).

[4] picture shared by Christoph Lampert.
contact: http://pub.ist.ac.at/~chl/.

[5] Studie: ”Kreditschwemme” kommt beim Mittelstand nicht an .
http://www.wirtschaft.com/studie-kreditschwemme-kommt-beim-mittelstand-nicht/ (retrieved: Oct
2016).

[6] The USC-SIPI Image Database.
http://sipi.usc.edu/database/ (retrieved: Oct 2016).

[7] Thesaurus Quotes.
http://quotesgram.com/img/thesaurus-quotes/3138560/ (retrieved: Oct 2016).

[8] Wang, R.: Computer Image Processing and Analysis (E161) Course (Harvey Mudd College).
http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html (retrieved: Oct 2016).

[9] Yes, this is Megan Fox.
like, everywhere on the internet... (retrieved: Oct 2016).

[10] Shrek, 2001.

67

http://www.robots.ox.ac.uk/~vgg/research/affine/
https://capitaleap.org/blog/2013/06/12/body-language-what-were-really-saying/
http://www.mkbergman.com/354/did-you-blink-the-structured-web-just-arrived/
http://pub.ist.ac.at/~chl/
http://www.wirtschaft.com/studie-kreditschwemme-kommt-beim-mittelstand-nicht/
http://sipi.usc.edu/database/
http://quotesgram.com/img/thesaurus-quotes/3138560/
http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html

References II
[11] S. Bird, E. Klein, and E. Loper.

Natural Language Processing with Python.
O’Reilly Media, Inc., 2009.

[12] D. G. Lowe.
Distinctive image features from scale-invariant keypoints.
Int. J. Comput. Vision, 60(2):91–110, 2004.

[13] C. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval.
Cambridge University Press, 2008.

68

