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Classification vs. Regression
I Given: training samples x1, ..., xn ∈ X

with labels y1, ..., yn
I Classification

I Labels indicate class membership
I Learn a classifier function Rd → {1, ...,C},

assigning samples to classes.
I Regression

I Labels are real-valued!
I Learn a regression function f : Rd → R,

assigning samples to continuous values.

I Regression Examples (incl. the “classic”: linear regression)
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Logistic Regression: Approach

I Logistic Regression (aka. Maximum Entropy) is a common
approach in statistical data analysis1

I Idea: Use a regression model for classification
I Compute a score for each class using regression
I This score should approximate the probability that the given

object belongs to class c , given that its features are x: P(c |x)
I The classifier picks the class with maximum score

1Cox, DR (1958), “The regression analysis of binary sequences (with discussion)”.
J Roy Stat Soc B.
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Logistic Regression: Approach

I Assumption: 2 classes only (0 vs. 1)
(success/failure, well/sick, ...)

I Given: a test sample x
I Goal: estimate P(C = 1|x)

Example (math exam)
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Logistic Regression: Model

I As a base model, we use the so-called Sigmoid function

P(C = 1|x) ≈ f (x) =
1

1 + e−x
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I Property A: limx→−∞f (x) = 0 and limx→∞f (x) = 1

I Property B: P(C = 1|x = 0) = f (0) = 0.5
→ We choose class 1 iff. x ≥ 0.
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Logistic Regression: Model

Extension

I We allow a shift and scaling of the sigmoid:

f (x ;w0,w) =
1

1 + e−(w0+w ·x)

I The parameters w0,w are estimated via learning (soon...)
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Multi-variate Logistic Regression

I Goal: apply logistic regression in case of multiple features
x ∈ Rd?

I We extend the sigmoid function:

f (x;w0,w1,w2...,wd) =
1

1 + e−(w0+w1·x1+w2·x2+...+wd ·xd )

or short (with vector www := (w1, ...,wd)):

f (x;w0,www) =
1

1 + e−(w0+x·www)

I The boundary between the two classes (or decision
boundary) of this model is at x · wx · wx · w + w0 = 0.
This is a hyperplane (in normal form)!
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Logistic Regression: Illustration
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10 Logistic Regression

I Because the decision boundary is linear, we call logistic
regression a linear classifier (there are a few more → later!).

Parameters

I www determines the orientation of the decision boundary.

I www also determines the slope of the decision function f .

I w0 determines the shift of the boundary.
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Logistic Regression: Training

Key Question: Training

I Given: a set of training samples x1, ..., xn ∈ Rd with Labels
y1, ..., yn ∈ {0, 1}

I Goal: Determine w0 and w (= the position and slope of the
decision function)

Approach: Maximum-likelihood Estimation

I Idea: Choose the parameters such that the observed samples
becomes “most likely”.

I For positive samples (yi = 1), f (xi ) should be high:(
P(C = 1|xi )

)
≈ f (xi ) ≈ 1

I For negative samples (yi = 1), f (xi ) should be low:(
P(C = 1|xi )

)
≈ f (xi ) ≈ 0
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Logistic Regression: Example
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Logistic Regression: Formalization

Maximum-Likelihood Estimation
We define a likelihood function and formulate an optimization
problem:

w∗0 ,w
∗ = arg max

w0,w

∏
i :y1=1

f (xi ) ·
∏

i :yi=0

(1− f (xi ))

︸ ︷︷ ︸
”Likelihood function”L(w0,w)

We rewrite the optimization problem:

w∗0 ,w
∗ = arg max

w0,w

∏
i :y1=1

f (xi ) ·
∏

i :yi=0

(1− f (xi ))

= arg max
w0,w

∏
i

f (xi )
yi · (1− f (xi ))1−yi // log

= arg max
w0,w

∑
i

yi · log(f (xi )) + (1− yi ) · log(1− f (xi ))
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Logistic Regression: Formalization

w∗
0 ,w∗ = argmax

w0,w

∏
i :y1=1

f (xi ) ·
∏

i :yi=0

(1− f (xi ))︸ ︷︷ ︸
”Likelihood-Funktion”L(w0,w)

= argmax
w0,w

∏
i

f (xi )
yi · (1− f (xi ))

1−yi // log

= argmax
w0,w

∑
i

yi · log(f (xi )) + (1− yi ) · log(1− f (xi ))

= argmax
w0,w

∑
i

log(1− f (xi )) + yi · log
( f (xi )

1− f (xi )

)

= argmax
w0,w

∑
i

log
(
�1 + exp(−(w0 + xiw))− �1
1 + exp(−(w0 + xiw))

)
+ yi · log

( 1

((((
((((1+exp(−(w0+xiw)))

exp(−(w0+xiw))

((((
((((1+exp(−(w0+xiw)))

)

= argmax
w0,w

∑
i

−log
(1 + exp(−(w0 + xiw))

exp(−(w0 + xiw))

)
− yi ·��log

(
��exp(−(w0 + xiw))

)
= argmax

w0,w

∑
i

−log
(
ew0+xiw + 1

)
+
∑
i

yi · (w0 + xiw)
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Logistic Regression: Formalization

arg max
w0,w

∑
i

−log
(
ew0+xiw + 1

)
+
∑
i

yi · (w0 + xiw)︸ ︷︷ ︸
”Log-Likelihood Function”L(w0,w)

Remarks

I There is no analytical solution for maximizing the
Log-Likelihood function L.

I We solve the problem numerically: For example, by finding
roots of the gradient using Newton’s method.

I The weights w indicate the importance of the single features
for the classification problem.
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Logistic Regression: Regularization
I Observation: Even though logistic regression is fairly robust,

the model tends to overfit when ...
I ... single features get a very extreme weight
I ... many unimportant weights get a weight 6= 0.

I To avoid this, we regularize the problem, such that the
entries in w tend to be small (or even 0).

I We define the norm of the weight vector w

||w||1 := |w1|+ |w2|+ ... + |wd | L1 norm

||w||2 :=
√

w2
1 + w2

2 + ... + w2
d L2 norm

I We adapt the optimization problem such that high weights in
w are sanctioned (with C ∈ R):

arg max
w0,w

L(w0,w) − C · ||w||1 // L1-Regularization

arg max
w0,w

L(w0,w) − C · ||w||2 // L2-Regularization
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What Difference does L1 vs. L2 make?

Example: Optimizing a Linear Function (regularized)

Left: w = (0, 1) (= L1 solution). Right: w = (0.15, 0.99) (=L2 solution).

I L1-Regularization enforces the weights of uninformative
features to be 0 (the weight vector is sparse). Put differently:
The classifier conducts a built-in feature selection.

I L2-Regularization reduces outliers (= extreme weights)
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Logistic Regression with > 2 Classes

Approach

I Divide the problem into many binary problems

Approach 1: One-vs-rest

I Learn one classifier ϕc for each
class c

I This classifier separates samples
in c from all other samples
(binary!)

I Given a new sample x, compute
all class scores
ϕ1(x), ϕ2(x), ..., ϕC (x) and
choose the highest-scored class

I How many classifiers do we
need? → C .

Approach 2: One-vs-one

I Learn one classifier ϕc1,c2 for
each pair of classes c1, c2

I This classifier is trained only on
Samples from these two classes
(binary!)

I Given a new sample, compute
all Scores
ϕ1,1(x), ϕ1,2(x), ..., ϕC−1,C (x)

I Choose the class that wins most
comparisons

I How many classifiers do we
need? → C ·(C−1)

2
.
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Logistic Regression: Discussion
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Logistic Regression: Code Sample

I Bag-of-Words Features

I Logistic Regression

I Inspect term weights
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