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Classification vs. Regression

» Given: training samples x1,...,X, € X
with labels yi, ..., vs
» Classification
» Labels indicate class membership
» Learn a classifier function RY — {1,..., C},
assigning samples to classes.
» Regression
> Labels are real-valued!
» Learn a regression function f : RY — R,
assigning samples to continuous values.

» Regression Examples (incl. the ‘“classic”: linear regression)




Logistic Regression: Approach

» Logistic Regression (aka. Maximum Entropy) is a common
approach in statistical data analysis!
> Idea: Use a regression model for classification

» Compute a score for each class using regression

» This score should approximate the probability that the given
object belongs to class ¢, given that its features are x: P(c|x)

» The classifier picks the class with maximum score

1Cox, DR (1958), “The regression analysis of binary sequences (with discussion)” .

J Roy Stat Soc B.
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Logistic Regression: Approach

» Assumption: 2 classes only (0 vs. 1)
(success/failure, well/sick, ...)

» Given: a test sample x

» Goal: estimate P(C = 1|x)

Example (math exam)
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Logistic Regression: Model

> As a base model, we use the so-called Sigmoid function
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» Property A: limy_,_oof(x) =0 and limy_of(x) =1
» Property B: P(C =1|x=0) = f(0) =0.5
— We choose class 1 iff. x > 0.



Logistic Regression: Model

Extension

» We allow a shift and scaling of the sigmoid:

P(C="passed"|x)
o o o o

°

f(x; wo, w)

1

= 14+ e—(wotw-x)

» The parameters wy, w are estimated via learning (soon...)
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Multi-variate Logistic Regression

» Goal: apply logistic regression in case of multiple features
x € R97?

> We extend the sigmoid function:

1

f(x; wo, wi, wo..., wy) =
( 1 W05 W15 W2y d) 1+e—(W0+W1~X1+W2-X2+...+Wd~xd)

or short (with vector w := (wy, ..., wy)):

1

FOGwo, W) = T woow)

» The boundary between the two classes (or decision
boundary) of this model is at x - w + wy = 0.
This is a hyperplane (in normal form)!



Logistic Regression: lllustration

Logistic Regression Logistic Regression

10,

» Because the decision boundary is linear, we call logistic
regression a linear classifier (there are a few more — later!).

Parameters

» w determines the orientation of the decision boundary.
» w also determines the slope of the decision function f.

> wy determines the shift of the boundary.



Logistic Regression: Training

Key Question: Training
» Given: a set of training samples x1, ..., x, € R with Labels
Yi,..,¥Yn € {0, 1}
» Goal: Determine wy and w (= the position and slope of the
decision function)

Approach: Maximume-likelihood Estimation

» lIdea: Choose the parameters such that the observed samples
becomes “most likely".

» For positive samples (y; = 1), f(x;) should be high:
<P(C = 1]x,~)> ~f(xi)~1
» For negative samples (y; = 1), f(x;) should be low:

(P(C = 1!Xi)> ~ f(xj) =0



Logistic Regression: Example
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Logistic Regression: Formalization *

Maximum-Likelihood Estimation
We define a likelihood function and formulate an optimization
problem:

Wy, W* = arg max H f(x;) - H (1—1(x;))

wo,w | .
iry1=1 ity;=0

" Likelihood function” L(wp,w)
We rewrite the optimization problem:
* * A _ )
wg,w" =argmax [ f(x)- ][ (1-F(x))
iry1=1 ity;=0

= arg max H F(xi)Y - (1= f(x;)) ™ // log

wo,wW

= arg max Z yi - log(f(xi)) + (L — y;) - log(1 — f(x;))
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Logistic Regression: Formalization

wg , w* = arg max
wo,W

= arg max
wo,wW

= arg max
wp,w
= arg max
wo,wW
= arg max
wo,wW

= arg max
wo,wW

= arg max
wo,W

H f(x;) - H (1—f(x

iy1=1 ity;=0

i)

" Likelihood-Funktion” L(wg,w)

IT Feayi- (@ —flxi)t— // log

Z yi - log(f(xi)) + (1 — yi) - log(1 — f(x;))

Z log(1 — f(x;)) + i -
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Logistic Regression: Formalization

wo,w

arg max Z —log <eW°+X"W + 1) + Zy/' ~(wp + xjw)
i i

" Log-Likelihood Function” L(wp,w)

Remarks
» There is no analytical solution for maximizing the
Log-Likelihood function L.
» We solve the problem numerically: For example, by finding
roots of the gradient using Newton’s method.
» The weights w indicate the importance of the single features
for the classification problem.
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Logistic Regression: Regularization

» Observation: Even though logistic regression is fairly robust,
the model tends to overfit when ...
> ... single features get a very extreme weight
> ... many unimportant weights get a weight # 0.

» To avoid this, we regularize the problem, such that the
entries in w tend to be small (or even 0).
> We define the norm of the weight vector w

[lwl|1 := [wa| + [wa| + ... + |wy L1 norm

Iwllz i= \/wf + W} + ..t wZ L2 norm

» We adapt the optimization problem such that high weights in
w are sanctioned (with C € R):

argmax L(wg,w) — C - ||lwl|; // L1-Regularization
wo,wW
argmax L(wo,w) — C - ||w||2 // L2-Regularization

wo,W
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What Difference does L1 vs. L2 make? *
Example: Optimizing a Linear Function (regularized)

w?

2 &

|/

w!

Left: w = (0,1) (= L1 solution). Right: w = (0.15,0.99) (=L2 solution).

» L1-Regularization enforces the weights of uninformative
features to be 0 (the weight vector is sparse). Put differently:
The classifier conducts a built-in feature selection.

» L2-Regularization reduces outliers (= extreme weights)
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Logistic Regression with > 2 Classes

Approach

» Divide the problem into many binary problems

Approach 1: One-vs-rest

» Learn one classifier ¢, for each
class ¢

» This classifier separates samples
in ¢ from all other samples
(binary!)

> Given a new sample x, compute
all class scores
1(x), @2(x), s pc(x) and
choose the highest-scored class

» How many classifiers do we
need? — C.

Approach 2: One-vs-one

>

Learn one classifier ¢, , for
each pair of classes ci1, ¢

This classifier is trained only on
Samples from these two classes
(binary!)

Given a new sample, compute
all Scores

e1.1(x), 1.2(%), ., pc-1,¢(x)
Choose the class that wins most

comparisons

How many classifiers do we
» c-(C-1)
need? — —5—.
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Logistic Regression: Discussion
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Logistic Regression: Code Sample *

» Bag-of-Words Features

» Logistic Regression
> Inspect term weights
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