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Classification vs. Regression

> Given: training samples xq,...,x, € X
with labels y1, ..., v,
> Classification
> Labels indicate class membership
> Learn a classifier function RY — {1, ..., C},
assigning samples to classes.
> Regression
> Labels are real-valued!
> Learn a regression function f : RY — R,
assigning samples to continuous values.

> Regression Examples (incl. the “classic”: linear regression)
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Logistic Regression: Approach

> Logistic Regression (aka. Maximum Entropy) is a common
approach in statistical data analysis!

> Idea: Use a regression model for classification

» Compute a score for each class using regression

> This score should approximate the probability that the given
object belongs to class ¢, given that its features are x: P(c|x)

> The classifier picks the class with maximum score

1Cox, DR (1958), “The regression analysis of binary sequences (with discussion)”.
J Roy Stat Soc B.

Logistic Regression: Approach

> Assumption: 2 classes only (0 vs. 1)
(success/failure, well/sick, ...)

> Given: a test sample x

> Goal: estimate P(C = 1|x)

Example (math exam)
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Logistic Regression: Model

> As a base model, we use the so-called Sigmoid function

1
P(C =1|x) ~ f(x) = T o
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> Property A: limy_,_oof(x) =0 and limy_,oof(x) =1
> Property B: P(C =1|x=0)=f(0) =0.5
— We choose class 1 iff. x > 0.

Logistic Regression: Model

Extension

> We allow a shift and scaling of the sigmoid:

1
- 1+ e—(wot+w-x)

f(x; wo, w)

> The parameters wp, w are estimated via learning (soon...)
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Logistic Regression: Remarks

Why this Model?

> simplicity, intuition

> The model is correct for normally distributed classes with
identical variance

> tradition

> few parameters to fit — little overfitting, even in case of few
training samples

Why not use linear regression?

Multi-variate Logistic Regression

> We apply logistic regression in case of multiple features
x € R97?

> We extend the sigmoid function:

] 1
X; W o Wq) =
( » Wo, W1, W2..., d) 1+ e—(wot+wi-xi+wa-xo4...4wy-xg)

or short (with vector w := (wy, ..., wy)):

1
- 1 4 e—(wot+x-w)

f(x; wo, w)

> The boundary between the two classes (or decision
boundary) of this model is at x - w + wy = 0.
This is a hyperplane (in normal form)!




Logistic Regression: Example *
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Logistic Regression: Formalization *

Maximum-Likelihood Estimation
We define a likelihood function and formulate an optimization

problem: P(C—4 |%;)
W, W" = arg max H fx,-)-.H (1—1f(x;))
i:y1:1 i11y;=0 )

" Likelihood function” L(wg,w)
We rewrite the optimization problem:

W()",w*:argmax H f(x;) - H (1—1(x;))

wp,w
’ iiy1=1 iyi=

— arg max H F(x;) - (1 — F(x;))r // log

wo,wW

— arg max Z yi - log(f(xi)) + (1 — yi) - log(1 — f(x;))

wo,w
I
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Logistic Regression: Formalization *

wg , Ww* = arg max H f(x;) - H (1—1f(x;))

wo ,W

iiy1=1 ity;=0
" Likelihood-Funktion” L(wp,w)
=argmax [ [ £(xi) - (1— F(x))'™” // log
1
=argmax > yi - log(f(x;) + (1 - yi) - log(1 ~ £(x;))
I/
_ f(x;)
= arg max Z log(1 — f(x;)) +yi- IOg(l — f(x,-))
!

1

B L+ exp(—(wo +xiw)) =1\ | (L-expl—frrw)))
=wEma D os 1+ exp(—(wo + xjw)) ) +i-log | LR
’ (1+ex %w)))

=argax 3 —log(FLEP AN (0 4+ xiw)))

o exp(—(wo + x;w))

i

= _ wo+X;w - .
arg rv%%( z': log (e + 1) + Zy, (wo + x;jw)
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Logistic Regression: Formalization *

_ Wo+X;W - :
arg max Z log(e i 1) + Zy, (wp + x;w)
1 1

"Log-Likelihood Function” L(wp,w)

Remarks
> There is no analytical solution for maximizing the
Log-Likelihood function L.

> We solve the problem numerically: For example, by finding -
roots of the gradient using Newton’s method.

> The weights w indicate the importance of the single features
for the classification problem.
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Logistic Regression: Regularization *

> Observation: Even though logistic regression is fairly robust,
the model tends to overfit when ...
> ... single features get a very extreme weight
> ... many unimportant weights get a weight # 0.

> To avoid this, we regularize the problem, such that the
entries in w tend to be small (or even 0).
> We define the norm of the weight vector w

[|wl|1 = [wa| + |wa| + ... + |wyl L1 norm

|wl|2 == \/W12+W22—|—...—{-W§ L2 norm

> We adapt the optimization problem such that high weights in
w sanctioned (with C € R):

arg max L(wp,w) — C-||lw]|z // L1-Regularisierung
arg %a‘?v( L(wo,w) — C - ||w]|2 // L2-Regularisierung
15
What Difference does L1 vs. L2 make? *

Example: Optimizing a Linear Function (regularized)

w?

4 wz ¢,

< ¥

w!

Left: w = (0,1) (= L1 solution). Right: w = (0.15,0.99) (=L2 solution).

> L1-Regularization enforces the weights of uninformative
features to be 0 (the weight vector is sparse). Put differently:
The classifier conducts a built-in feature selection.

> L2-Regularization reduces outliers (= extreme weights)
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Logistic Regression: Code Sample

> Bag-of-Words Features
> Logistic Regression

> Inspect term weights
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