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Unsupervised Learning = Learning without Labels images from [21, 11
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Clustering: discover coherent groups of samples
Dimensionality reduction: compressing samples

Itemset mining: finding frequent substructures in the data
Anomaly detection: detecting outliers in the data
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1. Clustering: Basics



Clustering: Definition

» Clustering (or cluster analysis) is an
unsupervised learning problem
(remember: samples only, no labels)

> The challenge is to discover coherent
subgroups (or clusters) of samples

» Difference to classification: In
clustering, we try to find the classes
and assign samples to them

Challenges

1. Often, it is unclear by which criterion
to cluster (example: cluster users, but
by which demographic attributes?)

2. Cluster granularity is unclear a priori
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Clustering AppllcathnS images from [4], [3]
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Example: Demographic Clustering on YouTube [8] *
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2. K-Means



Clustering: K-Means

We start with the “first choice” clustering algorithm: K-Means
» Given: samples xi, ...,x, € RY
» We assume that samples are clustered around K centers
(the “K means”) ji1, ..., i € R9
Each sample x; belongs to a mean k(i)
The clusters are spheres of identical size
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K-Means: Approach

When trying to determine the clusters / the means, we face a
chicken-egg problem
» If we knew the clusters, we could easily determine the means
(by averaging all samples of a cluster)
» If we knew the means, we could determine the clusters
(by assigning each sample to its closest mean)
» Approach (interleaved optimization): Alternately,
fix the clusters/means and estimate the other

1 function KMEANS(x1, ..., Xn, K)

2 initialize p1, ..., uk by random sampling from x1, ..., X,

3 repeat

4 fori=1,..,n: // assign each sample to its closest cluster
5 k(i) := argming=1, .. k||x; — pek|]

6 for k=1,..K: // re-estimate each cluster’'s mean

; Xei= (x| k()= K}

8 ek \Xkl erxk

9 until k(1), .. ,k( ) do not change

10 return ua, ..., Uk



K-Means: Example (Step 1)
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K-Means: Example (Step 2)
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K-Means: Example (Step 3...)
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K-Means: Properties
» K-Means corresponds to a local optimization
of the sum of squared errors

n

E(pa, ..., pk) = Z(Xi — bk(iy)’

i=1

» Computational effort: O(K - n- d) per iteration.

The number of iterations is often moderate.
» Convergence is guaranteed.

Proof of Convergence
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K-Means: Properties

Proof of Convergence (cont'd)
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K-Means: Properties

Proof of Convergence (cont'd)
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K-Means: Properties *

Does K-Means always lead to the same results?
No: K-Means is a local search method!
» Problem 1: The order of means can be permuted

p1 = (0,0), u2 = (1,1), u3 = (5,3)
p1 = (5,3), p2 = (0,0), us = (1,1)

» Problem 2: The resulting means can be completely different

» Approach: Restart multiple times, and keep the result with
minimal error E.

» During the algorithm, empty clusters may occur. Approach:
Reinitialize the corresponding center randomly and continue.
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K-Means: Properties (cont'd)

Given a clustering result p1, ..., ik, we can assign new samples x
to clusters (this is called vector quantization):

K(x) = argmin b —
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K-Means: Discussion
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3. Model Selection: Selecting K
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Choosing K: Model Selection

“Model selection is the task of selecting a statistical model
from a set of candidate models, given data.”

(en.wikipedia.org)

Here: Model Selection = Choosing K
» K too small (undersegmentation): clusters too diverse
» K too high (oversegmentation): too many parameters,
clusters too fine-grain
» Choosing the 'wrong' K leads to instable results

Approach 1: External Benchmark
» Sometimes, clustering is just one processing step of a larger
system, and we can benchmark that larger system

» Example: User clustering for advertising
(— benchmark by click-through-rate)
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Approach 2: Cluster Validation

Goal: measure a model’s goodness-of-fit without labels
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Example: The Bayes’ Information Criterion (BIC)
1. The clusters should be compact (small error E)

2. The model should be simple, i.e. have only few parameters

> Let 6 be the model parameters to learn, and let #60
be their number (e.g., in K-Means: #60 = K - d)

» Test different values of K, and pick this one:

K* = arg mKin —2/n<p(x1, ...,x,,\ﬁ)) + #0 - In(n)
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BIC for K-Means: Derivation
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BIC for K-Means: Derivation
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The Bayes Information Criterion

n 2
K* = arg mKin ; (x,- - uk(,-)) + K-d-In(n)

A E(K)

model complexity

E(K)

model
complexity

24



Selecting K: Search Strategies

Approach 1: Naive

> test values for K in a reasonable range.

» For every K, re-run clustering and evaluate (expensive!)

Approach 2: Hierarchical Clustering (more efficient)

> ...

> ..

> ...

Iteratively, pick the largest cluster

. and apply K-Means to the samples in this cluster,

obtaining K new clusters
stop once the overall quality (e.g., BIC) stops improving

» We obtain a tree of clusters

iteration 1 E(K) + K-d“In(n) '
) Jg i
2345 00

no improvement — stop
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Selecting K: Canopy Clustering imas ron

Approach 3: Canopy Clustering
» A greedy strategy to find (potentially suboptimal) clusters
on large datasets

> We use it to estimate K and to initialize the means
» Canopy clusters can overlap!

» Canopy clustering uses two thresholds

» T; (determines the number of clusters)
» T, (determines the overlap of clusters) (T, > Ty)

1 function CLUSTER_CANOPY(X := {x1, ..., Xn}) ///— R
2 C:={} y

3 while X <> {}: ;
4 choose a random sample x € X " \‘.
: Y= {yeX|ly—x| < Ty} x\ ;
’ Z:={yeX|Ti<l|ly—x| < T} /
7 C := C U{x} .

8 X:=X\Y )

9 return C -

10
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4. Expectation Maximization
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Expectation Maximization (EM)

» We can overcome some of the above limitations by

EM:

generalizing K-Means, resulting in a famous approach called
Expectation Maximization (EM)

Model
We explain the data xi, ..., X, by a Gaussian mixture model
K
X1y .0y Xp Z Pk ) p(X|,Uk, zk)
k=1

iteration 40

where p is the multivariate
normal density (Chapter 3),
W1, ..., bk are K centers,
21,...,2K are K covariance
matrices (the shapes of the
clusters), and Pi, ..., Pk are the
cluster’s proportions of the data
(also called priors).




Expectation Maximization (EM)

Remarks
» In K-Means, we would have P{ = P, = ... = Py = % and
o 0 0
0 o2 0
Y1 =Yp=..=Xkg= 0 0
0 0 o2
Approach

» We rename the two alternating K-Means steps

E-Step Re-assigning samples to clusters — “Expectation-Step”
M-Step Re-estimating the cluster centers — “Maximization-Step”
» We modify these steps a bit

» E-Step: No hard assignment of samples to centers, but a soft
assignment by computing the probability P(k(i) = k | x;)

» M-Step: Do not only estimate the cluster centers, but
parameters in general (e.g., the clusters’ shape-+prior)
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K-Means vs. Expectation Maximization (EM) *

Illustration
K-Means EM
E-Step || k(i) := argming [|x; — piy|| | wii := P(k(i) = k|x;) = %
2 x X P Wk X;
Hk = \;jlk Pk = ZEI;:V;
M-Step . v, = i wii (ki =) (xi— 1) |
k= i Wi
— e 2ai Wk
P = Dok 200 Wil
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EM: Example
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EM: Example
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EM: Goodness-of-Fit

> Goal: restart EM many times, pick the 'best’ model.

» Given an EM model © = (p1, ..., ik, X1,y ooy 2K, P1, ..

we want to measure its “goodness-of-fit”.
» Approach: We measure the likelihood of the data

L(x1,...,Xp; ©) = Hp(x;|@)

1
= H Z Pi - p(xi; pors X i)
ik

iteration O iteration 40

low likelihood high likelihood

- Pk),
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EM: Discussion
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EM as a general Learning Scheme

» EM for Gaussian Mixture Models is just a special case!

] symbol \ general EM \ Gaussian Mixture Models
X (known) input data | the features xq, ..., X,
© parameters means fi1, ..., UK,
shapes ¥ 1, ..., 2k,
priors Py, ..., Pk
V) unknown data the mapping from x; to clusters k

EM: General Learning Scheme

functi

on EM(X)
initialize © randomly
repeat

compute P(U|X, ©)

/

optimize parameters [6], obtaining a new ©

until convergence
return ©

/ E-step
// M-step
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5. Document Clustering
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Document Clustering

We can also cluster text using EM. The resulting method is called
Probabilistic Latent Semantic Analysis (PLSA)

» Given: a set of documents with their bag-of-words features

» PLSA divides the set of documents into clusters of
semantically similar documents

» The cluster centers correspond to prototypical word
distributions (or topics)
» We also call PLSA a topic model

Remarks

» This is clustering, not classification! Categories/topics are not
pre-defined, but PLSA discovers them by itself!

*
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PLSA: Illustration *
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PLSA: Notation

»

Input: a collection of documents di, ..., d,
and a vocabulary of terms wy, ..., wp,

Each document d is represented by its
bag-of-words feature. This gives us a
probability distribution of words
P(w|d).

We assume the document collection to
consist of K topics zi, ..., zx

Each topic z has a word distribution
P(w|z) (just like a document)

A document d can be seen a mixture of
topics, P(z|d)

rock concert
band
album
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PLSA: Sampling Process

Words are sampled from a document d in two steps
1. Choose a random topic z’ from P(z1|d), ..., P(zk|d)

2. Given Z/, pick a word from P(wy|Z’), ..., P(wpm|Z)

Document d s
1. choose topic P(z,d) = 0.01
P(z|d) o
5 ="
. e =10 i
Topics z,,z,,z, : 2 ;? ok
retrieval soccef™™ soccer
team ayer sound band
2. choose term ; play .
text music CUp “retrieval music live
; ; team i i
information information

P(wiz)
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PLSA: Derivation

PLSA Clustering estimates two probability distributions:
1. P(z|d)
» P(z|d) tells us which topics appear in a document
(or which topics (clusters) a document belongs to)
» P(z|d) is a K x n probability table (covering all
topic-document combinations)
2. P(w|z)
» This distributions tells us which words appear in a topic
» P(w|z) is an m x K probability table (covering all
word-topic combinations)

PLSA Approach
To estimate the above distributions, PLSA uses the EM Algorithm

» E-Step (assign samples to clusters)
— assign words to topics (= compute P(z|w, d))

» M-Step (estimate cluster parameters)
— estimate topics and mixtures (= P(w|z), P(z|d))
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PLSA: Algorithm *

» Given: documents di, ..., d,, terms wy, ..., Wp,
» Given: bag-of-words P(w/|d), number of topics K
> Initialize P(w|z), P(z|d) randomly

» Repeat until convergence:

42



PLSA: Algorithm
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PLSA: Algorithm
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PLSA: Code Sample
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PLSA: Discussion
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6. Agglomerative Clustering
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Agglomerative Clustering

» We call K-Means/EM divisive clustering techniques,
because they divide the dataset top-down

Agglomerative clustering

» initially, each sample belongs to its own cluster (singleton)
> iteratively, we merge the two “most similar”" clusters
and obtain a new, bigger cluster
> The result can be illustrated in form of a tree-like graph,
a so-called dendrogram
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Agglomerative Clustering: lllustration
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Agglomerative Clustering: Further Issues *

Stopping Criterion

» heuristics (see model selection)

Distance Measure
» We need to define a distance between clusters to pick the
“most similar” clusters to fuse.

» The three common alternatives (let X, Y be clusters):

single linkage | dist(X,Y) := mingex ey ||x — y|[?
complete linkage | dist(X, Y) := maxyex ey ||x — y||?
average linkage | dist(X,Y):

|
= XV erx,yev [Ix — yI[I?
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Agglomerative Clustering: Discussion
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Agglomerative Clustering: Application Example [5]

navidgatot

Click History:
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