

Machine Learning – winter term 2016/17 –

Chapter 05: Clustering

Prof. Adrian Ulges Masters "Computer Science" DCSM Department University of Applied Sciences RheinMain

$Unsupervised \ Learning = Learning \ without \ Labels \ _{images \ from \ [2], \ [1]}$

- Clustering: discover coherent groups of samples
- Dimensionality reduction: compressing samples
- Itemset mining: finding frequent substructures in the data
- Anomaly detection: detecting outliers in the data

Customers Who Bought This Item Also Bought

slide:ology: The Art and Science of Creating Grea... by Nancy Duarte

The Naked Presenter: Delivering Powerful Present... by Garr Reynolds \$16.49

Outline

⊁

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Clustering: Definition

- Clustering (or *cluster analysis*) is an unsupervised learning problem (*remember:* samples only, no labels)
- The challenge is to discover coherent subgroups (or *clusters*) of samples
- Difference to classification: In clustering, we try to *find* the classes and assign samples to them

Challenges

- 1. Often, it is unclear by which criterion to cluster (example: cluster users, but by which demographic attributes?)
- 2. Cluster granularity is unclear a priori

Clustering: Applications images from [4], [3]

Clustering has numerours **applications** in various areas

- market research
- life sciences
- information retrieval
- computer vision
- social networks
- data mining

6-66666666666

Example: Demographic Clustering on YouTube [8]

P(T|X)

0.50

counterstrike. skateboarding. worldofwarcraft, darth-vader, simpsons, soccer

cooking, choir, food, baby, kitchen, cats, dancing, dogs

horse, anime. cheerleading, kiss. gymnastics, cake, riding, dancing, videoblog

obama, mccain. georgewbush, court, interview. press-conference, airplane-flying, riot

0.50

americas-got-talent. cats, cartoon. origami, piano, muppets, commercial. tornado

Outline

1. Clustering: Basics

2. K-Means

- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Clustering: K-Means

We start with the "first choice" clustering algorithm: $\ensuremath{\text{K-Means}}$

- Given: samples $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- We assume that samples are clustered around K centers (the "K means") µ₁,...,µ_K ∈ ℝ^d
- Each sample \mathbf{x}_i belongs to a mean k(i)
- The clusters are **spheres** of **identical size**

K-Means: Approach

When trying to determine the clusters / the means, we face a ${\bf chicken-egg\ problem}$

- If we knew the clusters, we could easily determine the means (by averaging all samples of a cluster)
- If we knew the means, we could determine the clusters (by assigning each sample to its closest mean)
- Approach (interleaved optimization): Alternately, fix the clusters/means and estimate the other

```
function KMEANS(\mathbf{x}_1, ..., \mathbf{x}_n, K)

initialize \mu_1, ..., \mu_K by random sampling from \mathbf{x}_1, ..., \mathbf{x}_n

repeat

for i = 1, ..., n: // assign each sample to its closest cluster

k(i) := \arg \min_{k=1,...,K} ||\mathbf{x}_i - \mu_k||

for k = 1, ..., K: // re-estimate each cluster's mean

X_k := \{\mathbf{x}_i \mid k(i) = k\}

\mu_k := \frac{|\mathbf{x}_i|}{|\mathbf{X}_k|} \sum_{\mathbf{x} \in X_k} \mathbf{x}

until k(1), ..., k(n) do not change

return \mu_1, ..., \mu_K
```

K-Means: Example (Step 1)

K-Means: Example (Step 2)

K-Means: Example (Step 3...)

 K-Means corresponds to a local optimization of the sum of squared errors

$$E(\mu_1,...,\mu_K) = \sum_{i=1}^n (\mathbf{x}_i - \mu_{k(i)})^2$$

- Computational effort: O(K · n · d) per iteration.
 The number of iterations is often moderate.
- Convergence is guaranteed.

Proof of Convergence

⊁

Proof of Convergence (cont'd)

⊁

Proof of Convergence (cont'd)

Does K-Means always lead to the same results? *No: K-Means is a local search method!*

Problem 1: The order of means can be permuted

- ▶ Problem 2: The resulting means can be completely different
- ► **Approach**: Restart multiple times, and keep the result with minimal error *E*.
- During the algorithm, empty clusters may occur. Approach: Reinitialize the corresponding center randomly and continue.

K-Means: Properties (cont'd)

Given a clustering result $\mu_1, ..., \mu_K$, we can assign new samples **x** to clusters (this is called **vector quantization**):

$$k(\mathbf{x}) = \arg\min_{k} ||\mathbf{x} - \mu_k||$$

K-Means: Discussion

Outline

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Choosing K: Model Selection

"Model selection is the task of selecting a statistical model from a set of candidate models, given data."

(en.wikipedia.org)

Here: Model Selection = Choosing K

- ► K too small (undersegmentation): clusters too diverse
- ► *K* too high (*oversegmentation*): too many parameters, clusters too fine-grain
- Choosing the 'wrong' K leads to instable results

Approach 1: External Benchmark

- Sometimes, clustering is just one processing step of a larger system, and we can benchmark that larger system
- ► Example: User clustering for advertising (→ benchmark by click-through-rate)

Approach 2: Cluster Validation

Goal: measure a model's **goodness-of-fit** without labels

Example: The Bayes' Information Criterion (BIC)

- 1. The clusters should be **compact** (small error E)
- 2. The model should be simple, i.e. have only few parameters
- Let θ be the model parameters to learn, and let #θ be their number (e.g., in K-Means: #θ = K ⋅ d)
- ▶ Test different values of *K*, and pick this one:

$$\mathcal{K}^* = \arg\min_{\mathcal{K}} -2\ln\left(p(\mathbf{x}_1,...,\mathbf{x}_n|\theta)\right) + \#\theta \cdot \ln(n)$$

BIC for K-Means: Derivation

BIC for K-Means: Derivation

The Bayes Information Criterion

Selecting K: Search Strategies

Approach 1: Naive

- ▶ test values for *K* in a reasonable range.
- ► For every *K*, re-run clustering and evaluate (expensive!)

Approach 2: Hierarchical Clustering (more efficient)

- ... Iteratively, pick the largest cluster
- ... and apply K-Means to the samples in this cluster, obtaining K new clusters
- ... stop once the overall quality (e.g., BIC) stops improving
- We obtain a tree of clusters

Selecting K: Canopy Clustering image from [7]

⊁

Approach 3: Canopy Clustering

- A greedy strategy to find (potentially suboptimal) clusters on large datasets
- We use it to estimate K and to initialize the means
- Canopy clusters can overlap!
- Canopy clustering uses two thresholds
 - T_1 (determines the number of clusters)
 - T_2 (determines the overlap of clusters) $(T_2 > T_1)$

```
1 function CLUSTER_CANOPY(X := \{\mathbf{x}_1, ..., \mathbf{x}_n\})

2 C := \{\}

3 while X <> \{\}:

4 choose a random sample \mathbf{x} \in X

5 Y := \{\mathbf{y} \in X \mid ||\mathbf{y} - \mathbf{x}|| \le T_1\}

6 Z := \{\mathbf{y} \in X \mid T_1 < ||\mathbf{y} - \mathbf{x}|| \le T_2\}

7 C := C \cup \{\mathbf{x}\}

8 X := X \setminus Y

9 return C
```


Outline

⊁

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Expectation Maximization (EM)

 We can overcome some of the above limitations by generalizing K-Means, resulting in a famous approach called Expectation Maximization (EM)

EM: Model

• We explain the data $\mathbf{x}_1, ..., \mathbf{x}_n$ by a **Gaussian mixture model**

$$\mathbf{x}_1, ..., \mathbf{x}_n \sim \sum_{k=1}^{K} P_k \cdot p(\mathbf{x}|\mu_k, \Sigma_k)$$

where p is the **multivariate normal density** (Chapter 3), $\mu_1, ..., \mu_K$ are K centers, $\Sigma_1, ..., \Sigma_K$ are K covariance matrices (the *shapes* of the clusters), and $P_1, ..., P_K$ are the cluster's proportions of the data (also called *priors*).

Expectation Maximization (EM)

Remarks

▶ In K-Means, we would have $P_1 = P_2 = ... = P_K = \frac{1}{K}$ and

$$\Sigma_1 = \Sigma_2 = ... = \Sigma_{\mathcal{K}} = \begin{pmatrix} \sigma^2 & 0 & ... & 0 \\ 0 & \sigma^2 & ... & 0 \\ 0 & ... & ... & 0 \\ 0 & ... & 0 & \sigma^2 \end{pmatrix}$$

Approach

- We rename the two alternating K-Means steps
- E-Step Re-assigning samples to clusters \rightarrow "Expectation-Step" M-Step Re-estimating the cluster centers \rightarrow "Maximization-Step"
- We modify these steps a bit
 - ► E-Step: No hard assignment of samples to centers, but a soft assignment by computing the probability P(k(i) = k | x_i)
 - M-Step: Do not only estimate the cluster *centers*, but parameters in general (e.g., the clusters' shape+prior)

K-Means vs. Expectation Maximization (EM) Illustration

	K-Means	EM
E-Step	$k(i) := \arg\min_k \mathbf{x}_i - \mu_{k(i)} $	$\mathbf{w}_{ki} := P(k(i) = k \mathbf{x}_i) = \frac{p(\mathbf{x}_i; \mu_k, \Sigma_k)}{\sum_{k'} p(\mathbf{x}_i; \mu_{k'}, \Sigma_{k'})}$
M-Step	$\mu_k := \frac{\sum_{\mathbf{x} \in X_k} \mathbf{x}}{ X_k }$	$\mu_{k} := \frac{\sum_{i} \mathbf{w}_{ki} \cdot \mathbf{x}_{i}}{\sum_{i} \mathbf{w}_{ki}}$
	_	$\boldsymbol{\Sigma}_{k} := \frac{\sum_{i} w_{ki} \cdot (\mathbf{x}_{i} - \mu_{k}) (\mathbf{x}_{i} - \mu_{k})^{T}}{\sum_{i} w_{ki}}$
	—	$P_k := rac{\sum_i w_{ki}}{\sum_{k'} \sum_i w_{k'i}}$

EM: Example

EM: Example

EM: Goodness-of-Fit

- ► Goal: restart EM many times, pick the 'best' model.
- ► Given an **EM model** $\Theta = (\mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K, P_1, ..., P_K)$, we want to measure its **"goodness-of-fit"**.
- Approach: We measure the likelihood of the data

$$L(\mathbf{x}_1, ..., \mathbf{x}_n; \Theta) = \prod_i p(\mathbf{x}_i | \Theta)$$
$$= \prod_i \sum_k P_k \cdot p(\mathbf{x}_i; \mu_k, \Sigma_k)$$

EM: Discussion

EM as a general Learning Scheme

• EM for Gaussian Mixture Models is just a special case!

symbol	general EM	Gaussian Mixture Models
X	(known) input data	the features $\mathbf{x}_1,, \mathbf{x}_n$
Θ	parameters	means $\mu_1,, \mu_K$, shapes $\Sigma_1,, \Sigma_K$, priors $P_1,, P_K$
U	unknown data	the mapping from \mathbf{x}_i to clusters k

EM: General Learning Scheme

```
      1
      function EM(X)

      2
      initialize \Theta randomly

      3
      repeat

      4
      compute P(U|X, \Theta) // E-step

      5
      optimize parameters [6], obtaining a new \Theta // M-step

      6
      until convergence

      7
      return \Theta
```

Outline

⊁

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Document Clustering

⊁

We can also **cluster text** using EM. The resulting method is called **Probabilistic Latent Semantic Analysis (PLSA)**

- Given: a set of documents with their **bag-of-words** features
- PLSA divides the set of documents into clusters of semantically similar documents
- The cluster centers correspond to prototypical word distributions (or topics)
- We also call PLSA a topic model

Remarks

This is clustering, not classification! Categories/topics are not pre-defined, but PLSA discovers them by itself!

PLSA: Illustration

PLSA: Notation

- Input: a collection of documents d₁,..., d_n and a vocabulary of terms w₁,..., w_m
- Each document d is represented by its bag-of-words feature. This gives us a probability distribution of words P(w|d).
- ► We assume the document collection to consist of K topics z₁,..., z_K
- Each topic z has a word distribution P(w|z) (just like a document)
- ► A document *d* can be seen a mixture of topics, *P*(*z*|*d*)

rock concert band album

PLSA: Sampling Process

Words are sampled from a document d in two steps

- 1. Choose a random topic z' from $P(z_1|d), ..., P(z_K|d)$
- 2. Given z', pick a word from $P(w_1|z'), ..., P(w_m|z')$

PLSA: Derivation

PLSA Clustering estimates two probability distributions:

- 1. P(z|d)
 - P(z|d) tells us which topics appear in a document (or which topics (clusters) a document *belongs to*)
 - P(z|d) is a K × n probability table (covering all topic-document combinations)
- 2. P(w|z)
 - This distributions tells us which words appear in a topic
 - P(w|z) is an m × K probability table (covering all word-topic combinations)

PLSA Approach

To estimate the above distributions, PLSA uses the EM Algorithm

- E-Step (assign samples to clusters)
 - \rightarrow assign words to topics (= compute P(z|w, d))
- M-Step (estimate cluster parameters)
 - \rightarrow estimate topics and mixtures (= P(w|z), P(z|d))

PLSA: Algorithm

- **Given**: documents $d_1, ..., d_n$, terms $w_1, ..., w_m$
- **Given**: bag-of-words P(w|d), number of topics K
- Initialize P(w|z), P(z|d) randomly
- Repeat until convergence:

PLSA: Algorithm

PLSA: Algorithm

PLSA: Code Sample

PLSA: Discussion

Outline

⊁

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Agglomerative Clustering

We call K-Means/EM divisive clustering techniques, because they divide the dataset top-down

Agglomerative clustering

- ▶ initially, each sample belongs to its own cluster (*singleton*)
- iteratively, we merge the two "most similar" clusters and obtain a new, bigger cluster
- The result can be illustrated in form of a tree-like graph, a so-called **dendrogram**

Agglomerative Clustering: Illustration

Agglomerative Clustering: Further Issues

Stopping Criterion

heuristics (see model selection)

Distance Measure

- We need to define a distance between clusters to pick the "most similar" clusters to fuse.
- ▶ The three common alternatives (let *X*, *Y* be clusters):

single linkage	$dist(X, Y) := \min_{x \in X, y \in Y} x - y ^2$
complete linkage	$dist(X,Y) := \max_{x \in X, y \in Y} x - y ^2$
average linkage	$dist(X, Y) := rac{1}{ X \cdot Y } \sum_{x \in X, y \in Y} x - y ^2$

Agglomerative Clustering: Discussion

Agglomerative Clustering: Application Example [5]

References I

- ⊁
- M. Dukia: DoS(Denial of Service) Attacks. http://www.securitykiller.org/2015/12/dosdenial-of-service-attacks.html (retrieved: Nov 2016).
- [2] P. Ipeirotis: A Plea to Amazon: Fix Mechanical Turkl. http://www.behind-the-enemy-lines.com/2010/10/plea-to-amazon-fix-mechanical-turk.html (retrieved: Nov 2016).
- [3] The Value of a Professional Network? https://www.linkedin.com/pulse/value-professional-network-daniel-tunkelang (retrieved: Oct 2016).
- [4] University of Vermont: Complex Networks (Course Page). http://www.uwm.edu/pdodds/teaching/courses/2010-01UVM-303/content/pictures.html (retrieved: Nov 2016).
- [5] D. Borth, C. Schulze, A. Ulges, and T. Breuel. Navidgator - Similarity Based Browsing for Image & Video Databases. In Proc. KI 2008, pages 22–29, September 2008.
- [6] F. Dellaert. The Expectation Maximization Algorithm. Technical Report GIT-GVU-02-20, Georgia Institute of Technology, 2002.
- [7] S. Owen, R. Anil, T. Dunning, and E. Friedman. Mahout in Action. Manning Publications, 2012.
- [8] A. Ulges, M. Koch, and D. Borth. Linking Visual Concept Detection with Viewer Demographics. In ACM International Conference on Multimedia Retrieval, 6 2012.