

Machine Learning

- winter term 2016/17 -

Chapter 05: Clustering

Prof. Adrian Ulges

Masters "Computer Science"

DCSM Department
University of Applied Sciences RheinMain

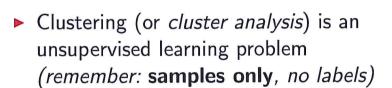
Unsupervised Learning = Learning without Labels images from [2], [1]

- Clustering: discover coherent groups of samples
- ▶ Dimensionality reduction: compressing samples
- ▶ Itemset mining: finding frequent substructures in the data
- Anomaly detection: detecting outliers in the data

Customers Who Bought This Item Also Bought

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

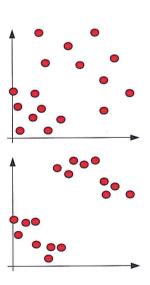
Clustering: Definition



- ► The challenge is to discover coherent subgroups (or *clusters*) of samples
- ▶ **Difference to classification**: In clustering, we try to *find* the classes and assign samples to them

Challenges

- 1. Often, it is unclear by which criterion to cluster (example: cluster users, but by which demographic attributes?)
- 2. Cluster granularity is unclear a priori

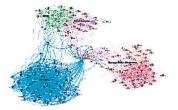


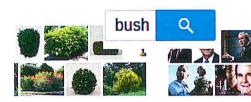
9

Clustering: Applications images from [4], [3]

Clustering has numerours applications in various areas

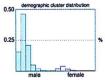
- market research
- life sciences
- ▶ information retrieval
- computer vision
- social networks
- data mining



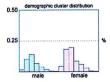


Example: Demographic Clustering on YouTube [8]

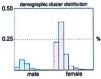
P(T|X)



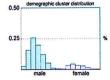
counterstrike, skateboarding, worldofwarcraft, darth-vader,



singing, cake, cooking, choir, food, baby, kitchen, cats, dancing, dogs



horse, anime, cheerleading, kiss, gymnastics, cake, riding, dancing, videoblog



obama, mccain, georgewbush, court, interview, press-conference,



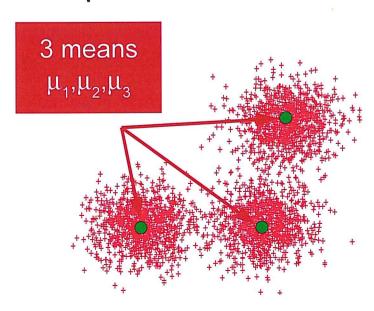
americas-got-talent, cats, cartoon, origami, piano, muppets,

- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Clustering: K-Means

We start with the "first choice" clustering algorithm: K-Means

- ▶ Given: samples $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- ▶ We assume that samples are clustered around K centers (the "K means") $\mu_1, ..., \mu_K \in \mathbb{R}^d$
- ▶ Each sample x_i belongs to a mean k(i)
- ► The clusters are **spheres** of **identical size**



K-Means: Approach

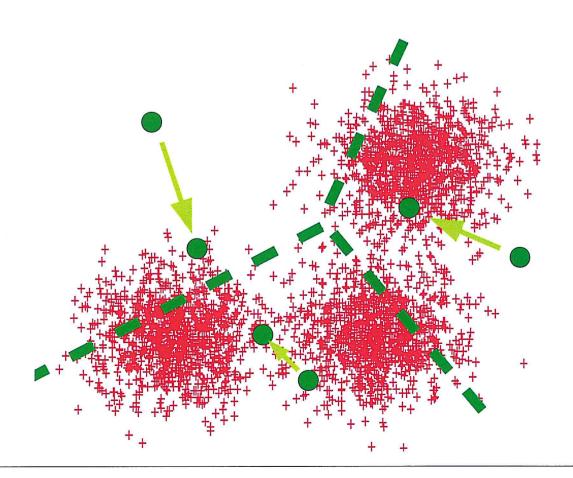
When trying to determine the clusters / the means, we face a **chicken-egg problem**

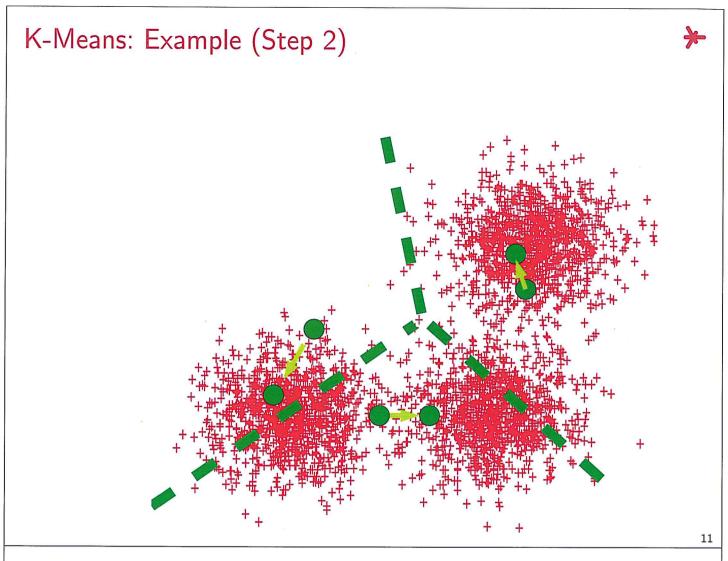
- ▶ If we knew the clusters, we could easily determine the means (by averaging all samples of a cluster)
- ▶ If we knew the means, we could determine the clusters (by assigning each sample to its closest mean)
- ► Approach (interleaved optimization): Alternately, fix the clusters/means and estimate the other

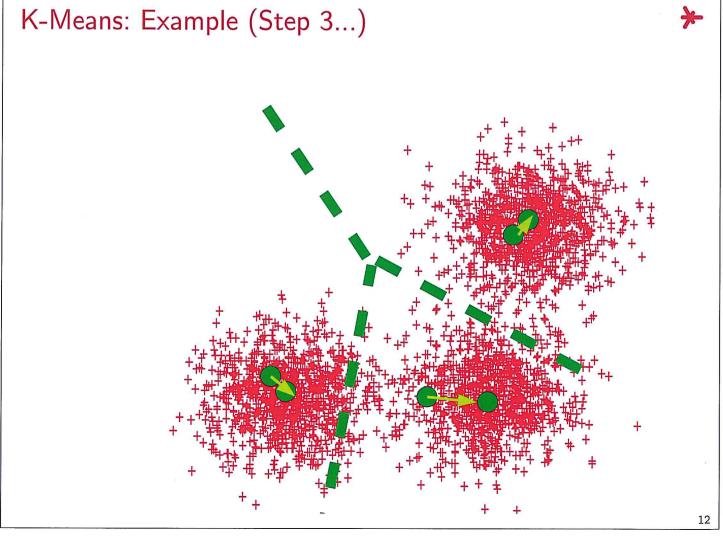
```
function KMEANS(\mathbf{x}_1,...,\mathbf{x}_n,K)
initialize \mu_1,...,\mu_K by random sampling from \mathbf{x}_1,...,\mathbf{x}_n
repeat

for i=1,...,n: // assign each sample to its closest cluster k(i):=\arg\min_{k=1,...,K}\|\mathbf{x}_i-\mu_k\|
for k=1,...K: // re-estimate each cluster's mean X_k:=\{\mathbf{x}_i\mid k(i)=k\}
\mu_k:=\frac{1}{|X_k|}\sum_{\mathbf{x}\in X_k}\mathbf{x}
until k(1),...,k(n) do not change return \mu_1,...,\mu_K
```

K-Means: Example (Step 1)







K-Means: Properties

► K-Means corresponds to a local optimization of the sum of squared errors

7
$$E(\mu_1, ..., \mu_K) = \sum_{i=1}^{n} (\mathbf{x}_i - \mu_{k(i)})^2$$

- ▶ Computational effort: $O(K \cdot n \cdot d)$ per iteration. The number of iterations is often moderate.
- Convergence is guaranteed.

Proof of Convergence

$$E_o \ge E_o \ge E_1 \ge E_2 \ge E_2 \dots \ge C$$

re-assign re-estimate Samples to cluster cluster center This sequence con veges (monotonously decreasing + lower bound)

K-Means: Properties

The Kneaus Algarithe

Proof of Convergence (cont'd)

because for each sample X; the new center Milli is at beast as close as Milli

because $\bar{x} = \underset{i}{\operatorname{arguin}} \sum ||x_i - y||^2$

K-Means: Properties

Proof of Convergence (cont'd)

K-Means: Properties

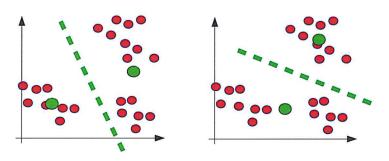
Does K-Means always lead to the same results? No: K-Means is a local search method!

▶ Problem 1: The order of means can be permuted

$$\mu_1 = (0,0), \mu_2 = (1,1), \mu_3 = (5,3)$$

$$\mu_1 = (5,3), \mu_2 = (0,0), \mu_3 = (1,1)$$

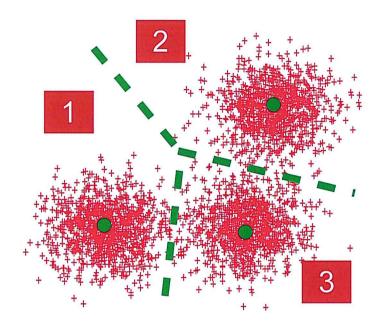
- ▶ Problem 2: The resulting means can be completely different
- ▶ **Approach**: Restart multiple times, and keep the result with minimal error *E*.
- ▶ During the algorithm, **empty clusters** may occur. **Approach**: Reinitialize the corresponding center randomly and continue.

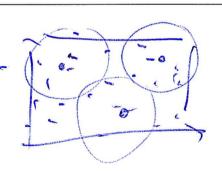


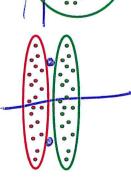
K-Means: Properties (cont'd)

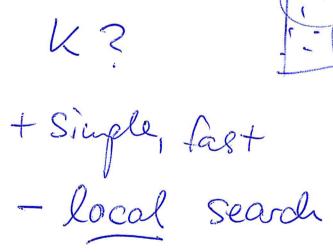
Given a clustering result $\mu_1, ..., \mu_K$, we can assign new samples **x** to clusters (this is called vector quantization):

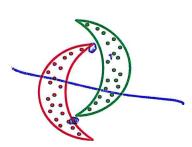
$$k(\mathbf{x}) = \arg\min_{k} ||\mathbf{x} - \mu_k||$$











- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering

Choosing K: Model Selection

"Model selection is the task of selecting a statistical model from a set of candidate models, given data."

(en.wikipedia.org)

Here: Model Selection = Choosing K

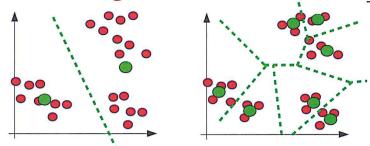
- ▶ K too small (undersegmentation): clusters too diverse
- ► K too high (oversegmentation): too many parameters, clusters too fine-grain
- ▶ Choosing the 'wrong' K leads to **instable results**

Approach 1: External Benchmark

- ► Sometimes, clustering is just one processing step of a larger system, and we can benchmark that larger system
- ► Example: User clustering for advertising (→ benchmark by click-through-rate)

Approach 2: Cluster Validation

Goal: measure a model's goodness-of-fit without labels



Example: The Bayes' Information Criterion (BIC)

- 1. The clusters should be **compact** (small error E)
- 2. The model should be simple, i.e. have only few parameters
- \triangleright Let θ be the model parameters to learn, and let $\#\theta$ be their number (e.g., in K-Means: $\#\theta = K \cdot d$)
- ▶ Test different values of K, and pick this one:

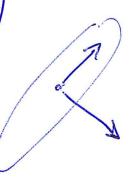
$$K^* = \arg\min_{K} \frac{-2In(p(\mathbf{x}_1, ..., \mathbf{x}_n | \theta)) + \#\theta \cdot In(n)}{\epsilon}$$

BIC for K-Means: Derivation , cluster centors

= -2. lu (TI 211 dr. e 2. muhum

lu(202) - 21/x; - pxci)112

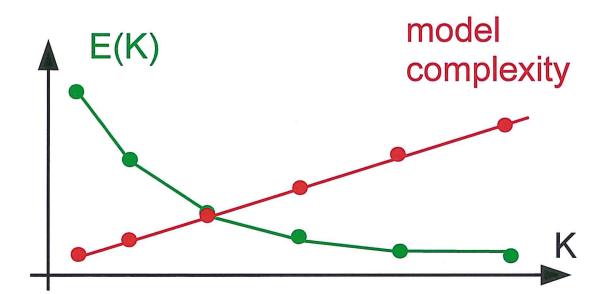
$$= \sum \|x_i - \mu_{KCI}\|^2 = E$$



BIC for K-Means: Derivation

The Bayes Information Criterion

$$K^* = \arg\min_{K} \sum_{i=1}^{n} \left(\mathbf{x}_i - \mu_{k(i)}\right)^2 + \underbrace{K \cdot d \cdot \ln(n)}_{\text{model complexity}}$$



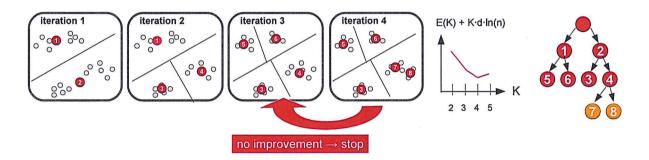
Selecting K: Search Strategies

Approach 1: Naive

- \triangleright test values for K in a reasonable range.
- \triangleright For every K, re-run clustering and evaluate (expensive!)

Approach 2: Hierarchical Clustering (more efficient)

- ... Iteratively, pick the largest cluster
- ... and apply K-Means to the samples in this cluster, obtaining K new clusters
- ▶ ... stop once the overall quality (e.g., BIC) stops improving
- We obtain a tree of clusters

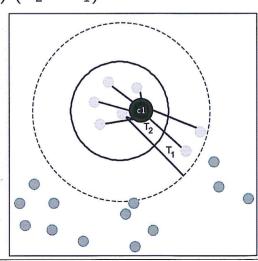


Selecting K: Canopy Clustering image from [7]

Approach 3: Canopy Clustering

- ► A **greedy strategy** to find (potentially suboptimal) clusters on large datasets
- ▶ We use it to estimate K and to initialize the means
- Canopy clusters can overlap!
- Canopy clustering uses two thresholds
 - $ightharpoonup T_1$ (determines the number of clusters)
 - $ightharpoonup T_2$ (determines the overlap of clusters) ($T_2 > T_1$)

```
function CLUSTER_CANOPY(X := \{x_1, ..., x_n\})
1
            C := \{\}
2
           while X <> \{\}:
                  choose a random sample x \in X
                  Y := \{ y \in X \mid ||y - x|| \le T_1 \}
5
                  Z := \{ y \in X \mid T_1 < ||y - x|| \le T_2 \}
6
                  C := C \cup \{x\}
7
                  X := X \setminus Y
8
           return C
9
10
```



- 1. Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering .
- 6. Agglomerative Clustering

Expectation Maximization (EM)

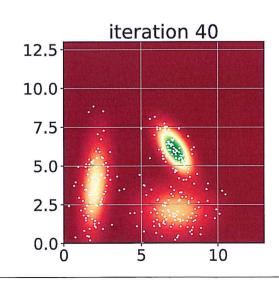
▶ We can overcome some of the above limitations by generalizing K-Means, resulting in a famous approach called Expectation Maximization (EM)

EM: Model

▶ We explain the data $x_1, ..., x_n$ by a Gaussian mixture model

$$\mathbf{x}_1, ..., \mathbf{x}_n \sim \sum_{k=1}^K P_k \cdot p(\mathbf{x}|\mu_k, \Sigma_k)$$

where p is the **multivariate** normal density (Chapter 3), $\mu_1, ..., \mu_K$ are K centers, $\Sigma_1, ..., \Sigma_K$ are K covariance matrices (the *shapes* of the clusters), and $P_1, ..., P_K$ are the cluster's proportions of the data (also called *priors*).



Expectation Maximization (EM)

Remarks

▶ In K-Means, we would have $P_1 = P_2 = ... = P_K = \frac{1}{K}$ and

$$\Sigma_1 = \Sigma_2 = ... = \Sigma_{\mathcal{K}} = \begin{pmatrix} \sigma^2 & 0 & ... & 0 \\ 0 & \sigma^2 & & 0 \\ 0 & ... & ... & 0 \\ 0 & ... & 0 & \sigma^2 \end{pmatrix}$$

Approach

▶ We **rename** the two alternating K-Means steps

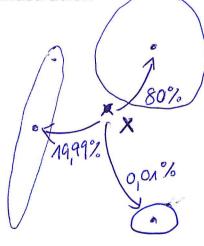
E-Step Re-assigning samples to clusters \rightarrow "Expectation-Step" M-Step Re-estimating the cluster centers \rightarrow "Maximization-Step"

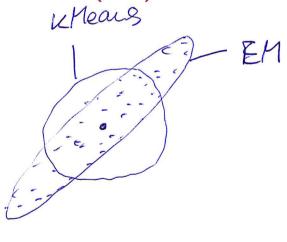
- ▶ We modify these steps a bit
 - ▶ **E-Step**: No hard assignment of samples to centers, but a **soft** assignment by computing the probability $P(k(i) = k \mid \mathbf{x}_i)$
 - ▶ M-Step: Do not only estimate the cluster *centers*, but parameters in general (e.g., the clusters' shape+prior)

29

K-Means vs. Expectation Maximization (EM)

Illustration

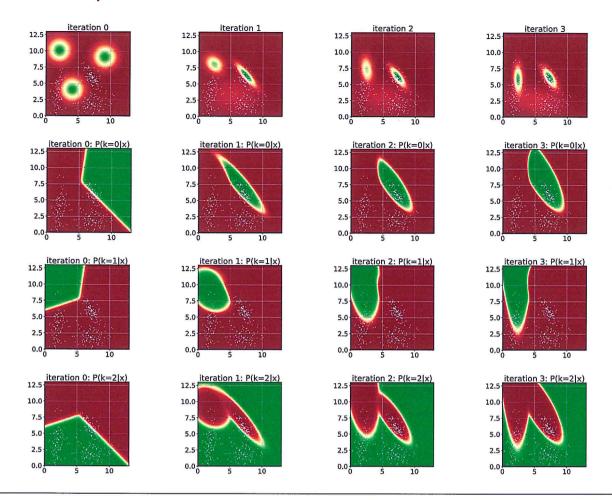




K-Means $\begin{bmatrix}
K-\text{Means} & \text{EM} \\
k(i) := \arg\min_{k} ||\mathbf{x}_i - \mu_{k(i)}|| & w_{ki} := P(k(i) = k|\mathbf{x}_i) = \frac{p(\mathbf{x}_i; \mu_k, \Sigma_k)}{\sum_{k=1}^{n} p(\mathbf{x}_i; \mu_k, \Sigma_k)}
\end{bmatrix}$

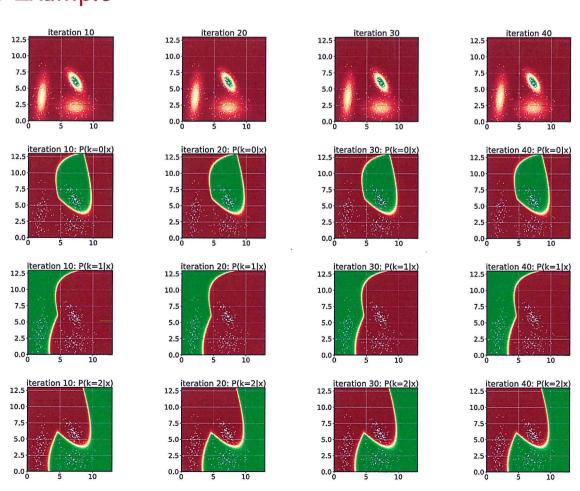
E-Step	$k(i) := \operatorname{argmin}_k \mathbf{x}_i - \mu_{k(i)} $	$\mathbf{w}_{ki} := P(k(i) = k \mathbf{x}_i) = \frac{p(\mathbf{x}_i; \mu_k, \Sigma_k)}{\sum_{k'} p(\mathbf{x}_i; \mu_{k'}, \Sigma_{k'})}$
M-Step	$\mu_k := \frac{\sum_{x \in X_k} x}{ X_k }$	$\mu_k := rac{\sum_i w_{ki} \cdot x_i}{\sum_i w_{ki}}$
	_	$\Sigma_k := \frac{\sum_i w_{ki} \cdot (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_i w_{ki}}$
	_	$P_k := \frac{\sum_i w_{ki}}{\sum_{k'} \sum_i w_{k'i}} P_k = \frac{1}{k}$
		30

EM: Example



EM: Example

31

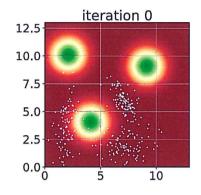


EM: Goodness-of-Fit

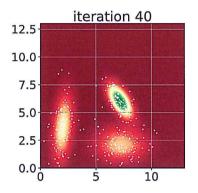
- ▶ Goal: restart EM many times, pick the 'best' model.
- ▶ Given an **EM model** $\Theta = (\mu_1, ..., \mu_K, \Sigma_1, ..., \Sigma_K, P_1, ..., P_K)$, we want to measure its **"goodness-of-fit"**.
- ▶ Approach: We measure the likelihood of the data

$$L(\mathbf{x}_1, ..., \mathbf{x}_n; \Theta) = \prod_i p(\mathbf{x}_i | \Theta)$$

$$= \prod_i \sum_k P_k \cdot p(\mathbf{x}_i; \mu_k, \Sigma_k)$$
iteration 0 iteration 40



low likelihood



high likelihood

33

EM: Discussion

EM as a general Learning Scheme

► EM for Gaussian Mixture Models is just a special case!

symbol	general EM	Gaussian Mixture Models
X	(known) input data	the features $\mathbf{x}_1,,\mathbf{x}_n$
Θ	parameters	means $\mu_1,,\mu_K$, shapes $\Sigma_1,,\Sigma_K$, priors $P_1,,P_K$
U	unknown data	the mapping from \mathbf{x}_i to clusters k

EM: General Learning Scheme

```
function EM(X)
initialize \Theta randomly
repeat

compute P(U|X,\Theta) // E-step
optimize parameters [6], obtaining a new \Theta // M-step
until convergence
return \Theta
```

25

Outline

- Clustering: Basics
- 2. K-Means
- 3. Model Selection: Selecting K
- 4. Expectation Maximization
- 5. Document Clustering
- 6. Agglomerative Clustering