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Unsupervised Learning = Learning without Labels images from 21, [1]

> Clustering: discover coherent groups of samples

» Dimensionality reduction: compressing samples

> ltemset mining: finding frequent substructures in the data
» Anomaly detection: detecting outliers in the data
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1. Clustering: Basics

Clustering: Definition

> Clustering (or cluster analysis) is an
unsupervised learning problem
(remember: samples only, no labels)

» The challenge is to discover coherent
subgroups (or clusters) of samples

> Difference to classification: In
clustering, we try to find the classes
and assign samples to them

Challenges

1. Often, it is unclear by which criterion
to cluster (example: cluster users, but
by which demographic attributes?)

2. Cluster granularity is unclear a priori
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Clustering: Applications

Clustering has nume-
rours applications in
various areas

> market research
> |ife sciences

» information
retrieval

images from [4], [3]
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> computer vision
» social networks

> data mining
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Example: Demographic Clustering on YouTube [8]
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2. K-Means

Clustering: K-Means

We start with the “first choice” clustering algorithm: K-Means
> Given: samples x1, ..., x, € R
> We assume that samples are clustered around K centers
(the “K means”) u1, ..., pk € R?
» Each sample x; belongs to a mean k(i)
» The clusters are spheres of identical size

3 means




K-Means: Approach
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When trying to determine the clusters / the means, we face a
chicken-egg problem
> If we knew the clusters, we could easily determine the means
(by averaging all samples of a cluster)
> If we knew the means, we could determine the clusters
(by assigning each sample to its closest mean)
> Approach (interleaved optimization): Alternately,
fix the clusters/means and estimate the other

function KMEANS(x4, ..., Xn, K)
initialize pa, ..., ux by random sampling from xq, ..., x,
repeat
fori=1,..,n: // assign each sample to its closest cluster
k(i) := arg ming=1,... k||xi — pl|
fork=1,..K: // re-estimate each cluster’'s mean
Xk = {X,‘ | k(l) = k}
Pk -= T)a erxk X

until k(1), ..., k(n) do not change
return i, ..., Uk

K-Means: Example (Step 1)
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K-Means: Example (Step 2)
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K-Means: Properties *

> K-Means corresponds to a local optimization
of the sum of squared errors

E(pa, s pk) = Z(Xi - /14<(f))2

> Computational effort: O(K - n- d) per iteration.
The number of iterations is often moderate.

> Convergence is guaranteed.

Proof of Convergence
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K-Means: Properties

Proof of Convergence (cont'd)
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K-Means: Properties

Does K-Means always lead to the same results?
No: K-Means is a local search method!
> Problem 1: The order of means can be permuted

] = (070)7/~42 — (17 1)7/1'3 == (573)
p1 = (5,3), u2 = (0,0), us = (1,1)

> Problem 2: The resulting means can be completely different

> Approach: Restart multiple times, and keep the result with
minimal error E.

> During the algorithm, empty clusters may occur. Approach:
Reinitialize the corresponding center randomly and continue.
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K-Means: Properties (cont'd)

Given a clustering result u1, ..., ik, We can assign new samples x
to clusters (this is called vector quantization):

K(x) = arg min| jx — |
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3. Model Selection: Selecting K

19

Choosing K: Model Selection

“Model selection is the task of selecting a statistical model
from a set of candidate models, given data.”

(en.wikipedia.org)

Here: Model Selection = Choosing K
> K too small (undersegmentation): clusters too diverse
> K too high (oversegmentation): too many parameters,
clusters too fine-grain
> Choosing the 'wrong' K leads to instable results

Approach 1: External Benchmark
> Sometimes, clustering is just one processing step of a larger
system, and we can benchmark that larger system

> Example: User clustering for advertising
(— benchmark by click-through-rate)

20




Approach 2: Cluster Validation *

Goal: measure a model's goodness-of-fit without labels
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Example: The Bayes’ Information Criterion (BIC)
1. The clusters should be compact (small error E)

2. The model should be simple, i.e. have only few parameters

> Let 6 be the model parameters to learn, and let #46
be their number (e.g., in K-Means: #60 = K - d)

> Test different values of K, and pick this one:

K* = arg m}in —2/n(p(x1, - x,,|0)) + #6 - In(n)
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BIC for K-Means: Derivation *
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The Bayes Information Criterion *

n

K* = arg m,in Z (x,- = ,uk(,-)>2 — f{ : d;ln(nz
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Selecting K: Search Strategies *

Approach 1: Naive
> test values for K in a reasonable range.

> For every K, re-run clustering and evaluate (expensive!)

Approach 2: Hierarchical Clustering (more efficient)
> ... lteratively, pick the largest cluster

> ... and apply K-Means to the samples in this cluster,
obtaining K new clusters

> ... stop once the overall quality (e.g., BIC) stops improving

» We obtain a tree of clusters

iteration 1 iteration 2 iteration 3 iteration 4 E(K) + K-d*In(n) .
o %, o %
& 80 c’o 5 80 oo
oOO Oooo OO 800 \/
goo gQe K *,
2345
25
Selecting K: Canopy Clustering imag fom *

Approach 3: Canopy Clustering
> A greedy strategy to find (potentially suboptimal) clusters

on large datasets
» We use it to estimate K and to initialize the means

> Canopy clusters can overlap!

> Canopy clustering uses two thresholds

> T3 (determines the number of clusters)
> T, (determines the overlap of clusters) (T2 > T1)

1 function CLUSTER_.CANOPY(X := {x1,...,Xn}) e

2 C:=1{} 4

3 while X <> {}: /

4 choose a random sample x € X I."

; Yi={yeX|ly—x| < T} a‘

6 Z:={yeX|Tha<|y—x|< T} ‘

7 C:= CU{x}

8 X=X\Y | @

9 return C ® =
10 ®
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4. Expectation Maximization

Expectation Maximization (EM) *

» We can overcome some of the above limitations by
generalizing K-Means, resulting in a famous approach called
Expectation Maximization (EM)

EM: Model

» We explain the data xi, ..., X, by a Gaussian mixture model

K
X1y ey Xp ™ Z P - p(x|:u’k7 Zk)
k=1

iteration 40
where p is the multivariate 12.5 |
normal density (Chapter 3), 10.0
U1, ..., bk are K centers,
¥1,..., XK are K covariance 7.5
matrices (the shapes of the 50

clusters), and P4, ..., Pk are the
cluster's proportions of the data ,
(also called priors). 0.0 8




Expectation Maximization (EM)

Remarks
> |In K-Means, we would have P{ = P, = ... = P = % and
o> 0 0
0 o2 0
Y=g, =) = 0 0
0 0 o2

Approach
> We rename the two alternating K-Means steps

E-Step Re-assigning samples to clusters — “Expectation-Step”
M-Step Re-estimating the cluster centers — “Maximization-Step”

> We modify these steps a bit
» E-Step: No hard assignment of samples to centers, but a soft
assignment by computing the probability P(k(i) = k | x;)
» M-Step: Do not only estimate the cluster centers, but
parameters in general (e.g., the clusters’ shape-prior)
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K-Means vs. Expectation Maximization (EM)

Illustration
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EM: Example

iteration 0 iteration 1

10

iteration 0: P(k=

10

jiteration 0: P(k=2]x
5 o= n
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EM: Example

iteration 10 iteration 20 iteration 30 iteration 40
} ] ' /5 i .5 t |
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iteration 10: P(k=1|x iteration 20: P(k=1[x i 3 iteration 40: P(k=1]x
12.5
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iteration 30: P(k=2]x
12.5 t
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EM: Goodness-of-Fit

> Goal: restart EM many times, pick the 'best’ model.

> Given an EM model © = (ug, ..., uk, 21, ..., 2K, P1, ..., Pk),
we want to measure its “goodness-of-fit” .

> Approach: We measure the likelihood of the data

L(x1,...;Xn; ©) = ‘ _p(x,-|@)

=11>_ Pc- p(xi i, i)
k

low likelihood high likelihood
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EM: Discussion
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EM as a general Learning Scheme

> EM for Gaussian Mixture Models is just a special case!

symbol general EM Gaussian Mixture Models
X (known) input data | the features xi, ..., x,,
© parameters means 1, ..., hK,
shapes 21, ..., 2k,
priors P1, ..., Pk
U unknown data the mapping from x; to clusters k

EM: General Learning Scheme

1 function EM(X)

2 initialize © randomly

3 repeat

4 compute P(U|X, ©) // E-step

5 optimize parameters [6], obtaining a new © // M-step

6 until convergence

7 return ©

8
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5. Document Clustering
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