

Machine Learning

- winter term 2016/17 -

Chapter 06: Dimensionality Reduction

(and Anomaly Detection)

Prof. Adrian Ulges

Masters "Computer Science"

DCSM Department
University of Applied Sciences RheinMain

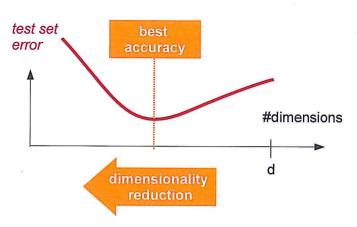
Outline

- 1. Dimensionality Reduction: Motivation
- 2. Feature Selection
- 3. Principal Component Analysis
- 4. PCA Example: "Eigenfaces"
- 5. Anomaly Detection

Dimensionality Reduction: Motivation

The Challenge

- ▶ Reminder: In machine learning, we are usually given **d-dimensional** samples $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- ► The number of features d can be high!



► Goal: Reduce d while preserving (or even improving) discriminativity

Why?

- ▶ Efficiency: faster training, faster application, less storage
- ▶ Avoid **overfitting**: overcoming the curse of dimensionality
- ▶ Better interpretability (and maybe visualization) of data

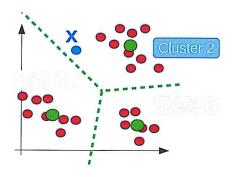
Dimensionality Reduction: Overview

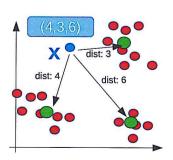
Approaches

- ► feature selection
- ▶ feature derivation, typically, by applying transformations

Example: K-Means for Feature Derivation

- ▶ Approach: map samples x to clusters (vector quantization)
- ▶ Alternative 1: store only the cluster number (1 dimension!)
- ► Alternative 2: store the distances to all centers (K dimensions) (see sklearn > KMeans > transform())





Outline

- 1. Dimensionality Reduction: Motivation
- 2. Feature Selection
- 3. Principal Component Analysis
- 4. PCA Example: "Eigenfaces"
- 5. Anomaly Detection

Feature Selection: Strategies

- ▶ Goal: Find a subset of features $\mathcal{F} \subseteq \{1,...,d\}$ for which we can solve our machine learning problem 'best' (for example: minimizing classification error)
- ▶ This is a **search problem** (brute-force effort: $O(2^d)$)
- ► There are three common approaches: wrappers, filters, and embedded methods

1. Wrappers

- Wrappers use an explicit evaluation of feature subsets (training and validating classifiers)
- ► Search can be done in a **greedy** fashion (adding or removing the 'best' features to the feature set), or by **backtracking**
- Benefit: It takes the underlying classifier into account!
- Usually the most reliable way, but very slow

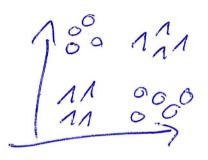
Feature Selection: Strategies

2. Filters

- Assess feature quality by a proxy measure
 - example: mutual information between feature X and class labels C

$$I(X,C) = \sum_{x \in X} \sum_{c \in C} p(x,c) \cdot \log_2 \left(\frac{P(x,c)}{P(x) \cdot P(c)} \right)$$

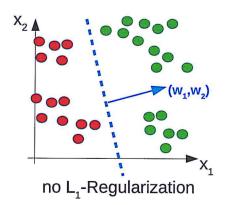
- ▶ **Search strategy**: rank features by their quality, pick the *K* top ones (*K determined via cross-validation*)
- ▶ Filters are cheaper than wrappers, but not as accurate

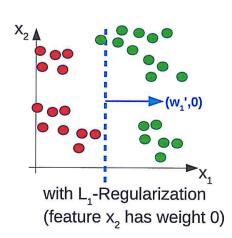


Feature Selection: Strategies

3. Embedded Methods

- ... treat feature selection as a part of model construction (i.e., we find classifier and features in the same process)
- Optimization is driven towards models with few features
- **Example**: logistic regression with **regularization**
 - ▶ the classifier penalizes feature weights, shrinking them to zero
 - ▶ features with weight zero are "filtered"!





Outline

- 1. Dimensionality Reduction: Motivation
- 2. Feature Selection
- 3. Principal Component Analysis
- 4. PCA Example: "Eigenfaces"
- 5. Anomaly Detection

Principal Component Analysis (PCA)

Idea (unsupervised!)

- ► The dataset exhibits a large stretch along some directions. These are the *important* directions.
- ▶ Along other directions, there is only little variation.

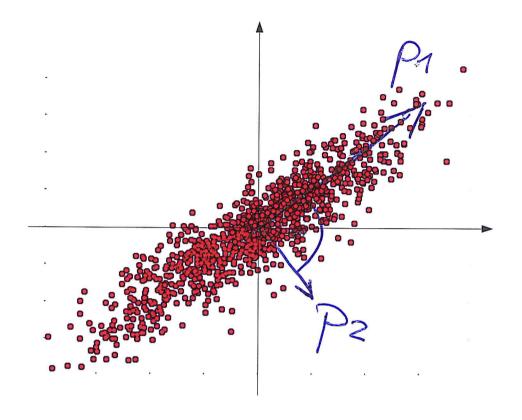
 These directions are merely *noise* and can be discarded.
- ▶ PCA is about finding the *important* directions (or principal components) of the data

Principal Components: Formalization

- ▶ In the following, we assume our data points to be centered around the origin (otherwise, we simply shift the data beforehand)
- ▶ What is the *most important direction*? What is the *second most important* direction, etc.?

PCA: Illustration

What are the Principal Components here?



Principal Components: Derivation

Obviously, the principal components seem to be related to the data's covariance matrix. Let's find out how1

We assure: X=

Goal: Fied rotation matrix

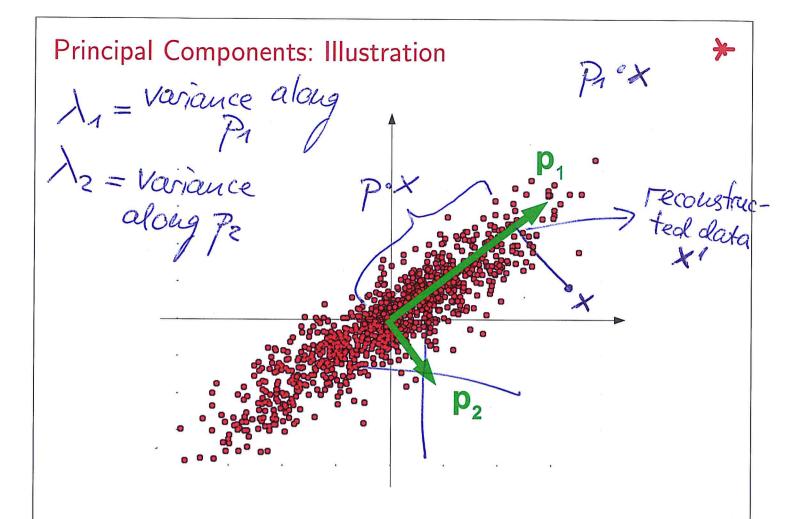
Suddle that cov()

¹cmp. Marsland, page 228f

Principal Components: Derivation $cov(Y) = \frac{1}{n} \cdot Y^{T} \cdot Y$ $= \frac{1}{n} (P \cdot X^{T}) (P \cdot X^{T})^{T}$ $= \frac{1}{n} (P \cdot X^{T}$

Principal Components: Derivation

Let P_{ij} be a column of P_{ij} . $(= a \text{ row of } P_{ij})$ $A_{ij} P_{ij} := \text{Cov}(X) \cdot P_{ij}$ $A_{ij} \cdot X_{ij} := A_{ij} \cdot X_{ij}$ The rows $P_{ij} \cdot P_{ij} \cdot X_{ij} \cdot X_{ij}$ of the covariance matrix $(\text{cov}(X)) \cdot X_{ij} \cdot X_{ij}$



PCA: Training


```
function PCA_TRAIN(\mathbf{x}_1,...,\mathbf{x}_n,K) // given: samples \mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^d
\mu := \frac{1}{n} \sum_i \mathbf{x}_i
for i = 1,...,n:
\mathbf{x}_i := \mathbf{x}_i - \mu \qquad // \text{ shift the samples to mean zero}
stack the samples into an n \times d data matrix X
\Sigma := \frac{1}{n} \left( X^T \cdot X \right) \qquad // \text{ covariance matrix}
compute \Sigma's eigenvalues \lambda_1,...,\lambda_d and eigenvectors \mathbf{p}_1,...,\mathbf{p}_d
(sorted in descending order of the eigenvalues)
stack \mathbf{p}_1,...,\mathbf{p}_K as rows into a K \times d-Matrix P_K
return P_K,\mu
```

Remarks

- ▶ **Training**: Compute the top K eigenvectors of the data's covariance matrix
- ▶ **Application**: reduces the samples from *d* to *K* dimensions

```
function PCA_APPLY(x) // given: a new sample x return P_K \cdot (\mathbf{x} - \mu) // dimension of return value: K
```

PCA: Remarks

▶ Heuristic for choosing K: Preserve α (e.g., 90%) of the eigenvector's total energy

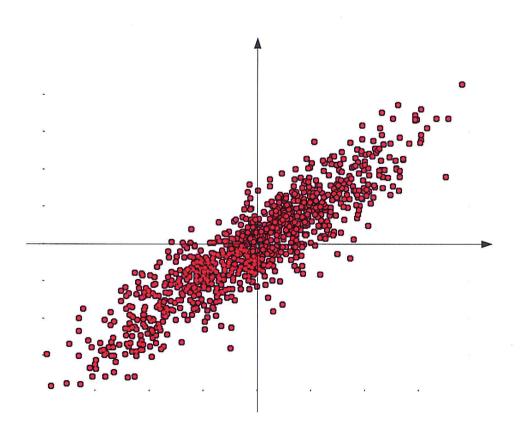
$$K:=\min_{K\in\{1,\dots,d\}} \;\; ext{such that} \;\; \sum_{k=1}^K \lambda_k \geq \alpha \cdot \sum_{k=1}^d \lambda_k$$

▶ Given a reduced K-dimensional feature $\mathbf{y} = (y_1, ..., y_K)$, we can reconstruct \mathbf{x} (to some extent) from \mathbf{x}' :

$$\mathbf{x}' = \mu + y_1 \cdot \mathbf{p}_1 + y_2 \cdot \mathbf{p}_2 + \dots + y_K \cdot \mathbf{p}_K$$

▶ We call $||\mathbf{x} - \mathbf{x}'||$ the reconstruction error.

PCA: Illustration



From PCA to Whitening

We learned above: Given a feature vector \mathbf{x} (and the $d \times d$ matrix P with Σ 's eigenvectors as rows), by applying the transformation $P \cdot \mathbf{x}$, the **covariance matrix** of the data becomes

$$\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & \lambda_d \end{pmatrix}$$

Each value λ_i is a variance within one dimension. We turn these variances into 1, simply by dividing by the standard deviation $\sqrt{\lambda_i}$. This leads to the **whitening** transform (see Chapter 'Features'):

$$Diag(\frac{1}{\sqrt{\lambda_1}}, \frac{1}{\sqrt{\lambda_2}}, ..., \frac{1}{\sqrt{\lambda_d}}) \cdot P \cdot \mathbf{x}.$$

Applying this transformation turns the data's covariance matrix into the identity I and decorrelates the features.

Outline

- 1. Dimensionality Reduction: Motivation
- 2. Feature Selection
- 3. Principal Component Analysis
- 4. PCA Example: "Eigenfaces"
- 5. Anomaly Detection

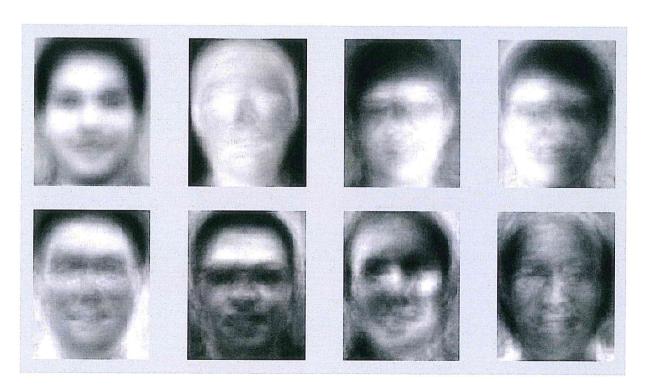
Example: Applying PCA to Images

*

- We can apply PCA to images, simply by scaling images to a standard resolution (say, N × M) and stacking all pixel values into sample vectors of dimension d = N × M
- Note: The principal components are
 (N ⋅ M)-dimensional, too!
 (i.e., we can visualize them as images)
- ► Example: PCA for face recognition → "eigenfaces" (apply PCA to lots of face images)

21

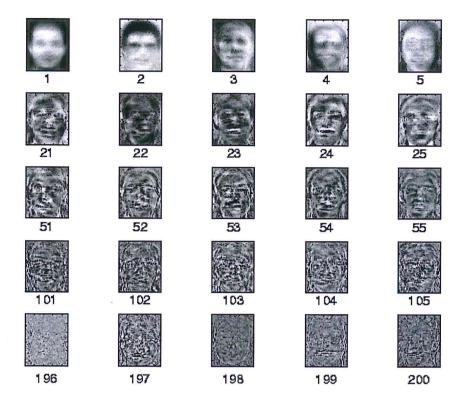
Example: Applying PCA to Images



Mean face (top left) and the first 7 principal components (=eigenfaces)

Example: Applying PCA to Images

Some eigenfaces from a different face dataset



23

Example: Applying PCA to Images

Reconstruction of a face using 0, 8, 16, ... eigenfaces

Example: Applying PCA to Images



- ▶ Which of these images does not show a human face?
- Approach: Compare the original image with its PCA reconstruction

faces are well reconstructed

non-faces are poorly reconstructed

25

Eigenfaces: Discussion

The Eigenfaces approach for **face detection** is **simple and powerful**, but it has some shortcomings:

- ► The results depend strongly on *illumination*, *shadows*, and *local changes*, e.g. glasses or beards
 - ▶ include those effects in the training set
 - ▶ learn smaller components (eye, mouth, ...)
 - ▶ (illumination): normalize all images
- Only faces of fixed size are detected
 - create scaled versions of the input image before searching
- ▶ Already small *rotations* of the head change the result
 - include rotated faces into the training set.
 - try to make the image upright before the applying PCA

Since eigenfaces [8], there have been at least two generations of more elaborate face detection methods [9, 7].

