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Resources for the next Chapters

Online Book 1: The nice one

I Nielsen: “Neural Networks and Deep Learning”
http://neuralnetworksanddeeplearning.com

Online Book 2: The tough one

I Goodfellow, Bengio, Courville: “Deep learning”
https://www.deeplearningbook.org
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(Artificial) Neural Networks.... image: [1]

I ... are one of the core topics of
artificial intelligence (AI)

I ... are biologically inspired: They are
mathematical models simulating the process
of “thinking” in living organisms’ brains

I ... are graphs (or networks) of interlinked
atomic processing units (neurons)

I ... are not programmed but define their own behavior entirely
through the graph’s links and weights. These are adjusted by
training.

I ... are covered by two research fields

1. computational neuroscience
(goal: better understanding of biological processes)

2. machine learning / AI (here)
(goal: solving practical data analysis problems)
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Neural Networks....
I ... have a turbulent history

1940 1950 1960 1970 1980 1990 2000 2010 2015

I ... exist in many variants
I multi-layer perceptron (in this lecture)
I convolutional neural networks (in this lecture)
I Boltzmann machines
I RBF networks
I recurrent neural networks
I LSTM networks
I ...

I ... are the most intensely machine learning model these days
(“deep learning”)
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Deep Learning Applications images from [5] [6] [2] [4] [7]
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Neural Networks: Biological Inspiration

Neurons are brain cells that send and receive electrical impulses.

Neurons: Terminology

I Cell body (soma):
center of the neuron, with
a diameter of 5− 100µm

I axon: thin, long (up to 1m)
nerve fibre, splits and
transmits impulses to other
neurons

I dendrites: small,
branch-like outgrowths that
receive impulses and
transmit them to the soma

I synapses: electro-chemical
link between two neurons.
Transfers signal from axon
to dendrites via transmitter
substances.
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dendrites
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axon
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synapse
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From Biological to Artificial Neural Networks

I Biological neural networks are (much) more complex than artificial ones

- connectivity: 1011 neurons, each connected with ≈ 7, 000 others
- adaptivity: number and connections of neurons change over time

I Biological neural networks are asynchronous and compute with rather
low frequency (1 KHz)

I The circuit layout is unknown

Learning

I Learning happens at synapses, by changing the transmitter dose

- sensitization: more transmitter, enhancing the signal
- desensitization: less transmitter, supressing the signal

Artificial Neural Networks

I weighted sum + activation function

I learning happens by adapting weights

I memory happens by storing weights
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Outline

1. Neurons

2. Training Neurons

3. The Capacity of Neurons

4. Neural Networks
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The McP-Neuron

I The historically oldest (1943) neuron by McCulloch & Pitts

I strongly simplified model of biological neurons

I no learning yet

Definition

I input
x = (x1, ..., xd ) ∈ {0, 1}d

I output y ∈ {0, 1}
I weights w =

(w1, ...,wd ) ∈ {−1, 1}d

I wj = 1: stimulating
(=”anregend”)

I wj = −1: inhibitory
(= “hemmend”)

I threshold θ ∈ R
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The McP-Neuron

Computational Model

I compute the scalar product between input signal x and
weights w, namely w · x

I apply an activation function f (here, a step function),
obtaining the output y

y = f (w · x)

=

{
1 if w · x ≥ θ
0 else

I The McP-Neuron is a function
φw,θ : {0, 1}d → {0, 1} with
parameters w, θ

I If φw,θ(x) = 1, we say the
neuron “is activated”, or the
neuron “fires”
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The McP-Neuron

McP-Neurons: Graphical Representation

I input x

I weights w

I threshold θ

What can McP-Neurons do?
I We can model logic gates using McP-neurons
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From McP-Neurons to the Perceptron

McP-Neurons: Limitations
I only boolean inputs/weights/outputs

I only binary activation functions

I no learning

Extensions: The Perceptron

I real-valued weights and inputs w, x ∈ Rd

I We will introduce a learning algorithm, the Delta-rule
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Perceptron: Graphical Interpretation

I The parameters w, θ define a hyperplane

I w · x ≥ θ: x is on the positive side

I w · x < θ: x is on the negative side

w

positive side

negative side

hyperplane

θ / ||w||
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Outline

1. Neurons

2. Training Neurons

3. The Capacity of Neurons

4. Neural Networks
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Perceptron Training: Basics

I A neuron’s function (or behavior) φw,θ is determined by the
parameters w and θ

I Given labeled training data: How do we find the best
parameters / the best hyperplane?

bad parameters: 
error rate 12 / 30 = 40%
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Perceptron Training: Vector Augmentation

Before learning, we simplify notation using a
simple trick called vector augmentation:

Idea
I omit the additional threshold parameter
θ and include it in the weight vector

So far...
I x := (x1, ..., xd ),w := (w1, ...,wd )

I fire if w · x ≥ θ (or w · x− θ ≥ 0)

Now
I x := (x1, ..., xd , 1),w := (w1, ...,wd ,−θ)

I fire if w · x ≥ 0

Remark
This is just a change of notation (θ is not
written separately any more), not of behavior!
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Perceptron Training

Learning happens by an iterative optimization. We start with
random values for w and θ, and in each iteration we ...

I ... classify a training sample x and compare the result φ(x)
with the targeted result y

I If necessary, we correct the neuron’s parameters such that
the output φ(x) is adapted towards the desired output y
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Perceptron Training: The Delta Rule

How do we compute the ’right’ update ∆w? There are different
strategies. The most famous one is the Delta Rule:

4w = λ ·
(
y − φ(x)

)
· x

Remarks

I We call λ the learning rate

I Note: If xi is classified correctly, ∆w = 0→ no update

1 function train perceptron(x1, ..., xn, y1, ..., yn, λ) :
2 initialize w randomly
3 until convergence:
4 choose a random training sample (x, y) (with y ∈ {0, 1})
5 compute φ(x) // classify x

6 if φ(x) <> y :

7 w := w + λ ·
(

y − φ(x)
)
· x︸ ︷︷ ︸

∆w

8
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The Delta Rule: Motivation

4w = λ ·
(
y − φ(x)

)
· x

I Why does the Delta rule work?

I We illustrate what happens when a training sample is
misclassified ...
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The Delta Rule: Motivation

Formal Motivation
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The Delta Rule: Motivation

Formal Motivation
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The Delta Rule: Code Example
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The Delta Rule: Code Example
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23



The Delta Rule: Code Example
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The Delta Rule: Code Example
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The Delta Rule: Code Example
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Outline

1. Neurons

2. Training Neurons

3. The Capacity of Neurons

4. Neural Networks
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An Important Question...

Can a single perceptron learn any Function f : Rd → {−1, 1}?
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Achieving Non-Linearity by connecting Neurons

We can realize XOR by connecting multiple neurons!
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Achieving Non-Linearity

Remarks

I This is only possible because
of the neurons’ non-linear
activation functions!

- with activation functions

y = f (w ′′1 · f (w1x1 + w2x2) + w ′′2 · f (w ′1x1 + w ′2x2))

- without activation functions

y = w ′′1 · (w1x1 + w2x2) + w ′′2 · (w ′1x1 + w ′2x2)

= w ′′′1 x1 + w ′′′2 x2

This is just a linear function (and does not solve XOR)
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Achieving Non-Linearity by connecting Neurons

Theorem (Learning Capacity of Networks of McP-Neurons)

We can realize any boolean function f : {0, 1}d → {0, 1} by
connecting not more than 2d + 1 McP-neurons.

Proof(by construction)
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Proof by Construction
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Proof by Construction: Example

1
3

-1 ...

1 x
3

1  x
2

-1 ¬x
1

1      111

x
2
     

x
1
     

x
3
     

x
4
     

x
5
     1

3

1

-1

-1

1

-1
2

1

-1

1

-1

¬x
1
∧x

2
∧x

3
∧¬x

4
∧x

5
   ∨

x1∧¬x2∧¬x3∧x4∧x5    ∨
¬x1∧x2∧¬x3∧x4∧¬x5    

33



The McP-Neuron: Do-it-Yourself

1. Sketch an McP-Neuron that models the (even) parity bit
for a given sequence of 3 input bits, x1, x2, x3.

2. Given n input bits, the above model seems to require 2n + 1
neurons. Can you do ’better’ by using more than 2 layers?
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The McP-Neuron: Do-it-Yourself
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Perceptron: Activation Functions

We can use other activation functions:

plot function parameters
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Remarks
I The sigmoid approximates a step function, but is also

differentiable (with f ′(x) = f (x) · (1− f (x)))
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Perceptron: Activation Functions

We can use other activation functions:

plot function parameters
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Can connected Perceptrons learn Any Function?1

Theorem (Learning Capacity of Networks of Perceptrons)

By connecting multiple perceptrons with sigmoidal activation function, we can

approximate any continuous function f : [0, 1]d → [0, 1].

Remarks
I By connecting perceptrons, we can learn any decision boundary!

I This works with just one hidden layer (see below).

I Open Question: How many perceptrons do we need?

I Open Question: How do we find a solution that generalizes properly?

“In this paper we demonstrate that finite linear combinations
of compositions of a fixed, univariate function and a set of affine
functionals can uniformly approximate any continuous function of
n real variables with support in the unit hypercube. Only mild con-
ditions are imposed on the univariate function. Our results settle
an open question about representability in the class of single bid-
den layer neural networks. In particular, we show that arbitrary
decision regions can be arbitrarily well approximated by conti-
nuous feedforward neural networks with only a single internal,
hidden layer and any continuous sigmoidal nonlinearity. ”

(Cybenko., G. [3])

1
Try Nielsen’s online demo: http://neuralnetworksanddeeplearning.com/chap4.html 38



Outline

1. Neurons

2. Training Neurons

3. The Capacity of Neurons

4. Neural Networks

39



Definition: Neural Network

Neural Network Definition

I A neural network is a set of
(partially) connected neurons

I The output signal of a neuron
can be used as input signals to
(multiple) other neurons

I The networks’ input consists of
all input signals that are not
derived from other neurons

I The network’s output consists of
all output signals that are not
used as input for other neurons

I Each link between two neurons
has a weight. We denote the
weight of the connection from
neuron i to neuron j with wij .

Example

I 4 neurons n1, ..., n4

I activation functions
a1, ..., a4

I network input: x1, x2

I network output: z1, z2

I “hidden signals”: y1, y2
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Neural Network: Graphical Representation

Neural networks are weighted, directed graphs
I Neurons are nodes, connected by weighted edges
I Inputs and outputs are modeled as separate nodes
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Network Topologies

We can distinguish two general network topologies

I feedforward networks

I recurrent networks
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Feedforward Networks: Layers

I Feedforward networks are DAGs (“directed acyclic graphs”),
i.e. they do not contain any cycles.

I The signal is never propagated backwards through the
network (hence “feedforward”)

I Convention: We organize feedforward networks in layers

Layer Architecture

I Every neuron is only
connected with neurons from
the previous and next layers

I We call two layers fully
connected in case all of their
neurons are connected
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Feedforward Networks: Computation

Computational Model

I the signal is propagated through the network instantly

I We collect each layer’s weights+biases in a matrix/vector
(for non-existing edges, entries are zero).

Example (two hidden layers)
I We collect all the signals leaving each layer in a vector

I input x = (x1, ..., xn)
I hidden layer 1: y1 = (y1

1 , ..., y
1
m)

I hidden layer 2: y2 = (y2
1 , ..., y

2
p )

I output z = (z1, ..., zq)

I Each layer applies (1) a weighted
sum (a linear operation!), and (2) a
non-linear activation f (for each neuron):

I y1 = f (W · x + b)
I y2 = g(W ′ · y1 + b′)
I z = h(W ′′ · y2 + b′′)
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Do-Forward-Computation Yourself

Given is the following network with threshold activation functions
and input x = (1, 0). Compute the output z1.
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Do-Forward-Computation Yourself

Let’s do it again, this time in matrix notation:

45

x
1

x
2

y
1

y
2

y
3

z
2

z
1

1

-1

1

2

3

0

2

0

-1

3

-3

1

1

3

0

-2

0



The 3-layer Perceptron (MLP)
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In the following, we focus on the most basic type of neural
network, the multi-layer perceptron (MLP).

I The network is feed-forward
I There is only one hidden layer

I All layers are fully connected
I The network uses a sigmoidal activation function

I We know: such a network can learn any function!
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Recurrent Neural Networks

In contrast to feedforward networks, recurrent networks may
contain cycles → the signal is propagated backwards through the
network!

Example Architecture: Elman Networks

input

context

hidden

output
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Recurrent Neural Networks

I The signals in the network must be clocked

I We extend the computational model with a
time component t = 1, 2, 3, ...

I Example: An OCR system recognizing a sequence of
characters x1, x2, ... (here, t is the character number)

I At each time t, the network is fed an input x(t)

1 function update elman network(x(t))
2 hidden(t) := f(x(t), context(t-1))
3 context(t) := g(hidden(t))
4 output(t) := h(hidden(t))
5

I This way, the network achieves a memory effect!

I Example “... in Europe. Italy ...”
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