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Resources for the next Chapters

Online Book 1: The nice one

> Nielsen: “Neural Networks and Deep Learning”
http://neuralnetworksanddeeplearning.com
Online Book 2: The tough one

> Goodfellow, Bengio, Courville: “Deep learning”
https://www.deeplearningbook.org




(Artificial) Neural Networks.... imsge

> ... are one of the core topics of
artificial intelligence (Al)

> ... are biologically inspired: They are
mathematical models simulating the process
of “thinking” in living organisms’ brains

> ... are graphs (or networks) of interlinked
atomic processing units (neurons)

> ... are not programmed but define their own behavior entirely
through the graph'’s links and weights. These are adjusted by
training.

> ... are covered by two research fields

1. computational neuroscience

(goal: better understanding of biological processes)
2. machine learning / Al (here)

(goal: solving practical data analysis problems)

Neural Networks....

> ... have a turbulent history
A

4

1940 1950 1960 1970 1980 1990 2000 2010 2015

> ... exist in many variants

> multi-layer perceptron (in this lecture)
convolutional neural networks (in this lecture)
Boltzmann machines

RBF networks

recurrent neural networks

LSTM networks

vV v v v v Vv

> ... are the most intensely machine learning model these days
(“deep learning”)
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Neural Networks: Biological Inspiration

Neurons are brain cells that send and receive electrical impulses.

Neurons: Terminology

> Cell body (soma):
center of the neuron, with
a diameter of 5 — 100um

> axon: thin, long (up to 1m) S);laps@fendrites

i i N { .
nerve fl.bre., splits and vl e ( | Bf«— dendrites
transmits impulses to other
neurons

> dendrites: small,
branch-like outgrowths that axon
receive impulses and
transmit them to the soma

post-synaptic \& N membrane

. membrane
> synapses: electro-chemical

link between two neurons.
Transfers signal from axon
to dendrites via transmitter
substances.

dentrite




From Biological to Artificial Neural Networks

> Biological neural networks are (much) more complex than artificial ones

- connectivity: 10™ neurons, each connected with = 7,000 others
- adaptivity: number and connections of neurons change over time

> Biological neural networks are asynchronous and compute with rather
low frequency (1 KHz)

> The circuit layout is unknown

Learning

> Learning happens at synapses, by changing the transmitter dose

- sensitization: more transmitter, enhancing the signal
- desensitization: less transmitter, supressing the signal

Artificial Neural Networks W,
> weighted sum + activation function Y
g " e
> learning happens by adapting weights :
: : w
> memory happens by storing weights i
Outline

1. Neurons




The McP-Neuron

> The historically oldest (1943) neuron by McCulloch & Pitts
> strongly simplified model of biological neurons

> no learning yet
Definition
> input
X = (x1, ., xq) € {0,1}4

> output y € {0,1}
> weights w =
(Wl, ey Wd) c {—1, 1}d
> w; = 1: stimulating
(="anregend”)
> w; = —1: inhibitory
(:

X1 | 2X
YV
4

N

“hemmend”) X
> threshold # € R

The McP-Neuron

Computational Model
> compute the scalar product between input signal x and
weights w, namely w - x

> apply an activation function f (here, a step function),
obtaining the output y

y =f(w-x)
_{ 1 ifw-x>06
0 else f(x-w) 4

» The McP-Neuron is a function
o™? . {0,1}9 — {0,1} with
parameters w, 0

> If p"9(x) = 1, we say the X-W
neuron “is activated”, or the
neuron “fires”




The McP-Neuron

McP-Neurons: Graphical Representation

> input x
> weights w

> threshold 6 Xn =L Wm

What can McP-Neurons do?
> We can model logic gates using McP-neurons

1= -1 o X, = 1

-0,5 X, = 1 X, = 1

NOT AND m
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From McP-Neurons to the Perceptron

McP-Neurons: Limitations
> only boolean inputs/weights/outputs

> only binary activation functions

> no learning

Extensions: The Perceptron.
> real-valued weights and inputs w, x € R

> We will introduce a learning algorithm, the Delta-rule

12




Perceptron: Graphical Interpretation »*

> The parameters w, 0 define a hyperplane
> w- X > 60: x is on the positive side

> w-Xx < 6: x is on the negative side

o~
Ny
hH ﬂ%\\ A W
*'4\4@/;‘, N\
o)A N

S, N
/1/)@ \\

negative side

Xpositive side

~
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Outline R »*

2. Training Neurons

14




Perceptron Training: Basics *

> A neuron'’s function (or behavior) " is determined by the
parameters w and 0

> Given labeled training data: How do we find the best
parameters / the best hyperplane?

hyperplane 2

6)
ositive (Wz’ Val
P 0 0

~ \side 0 3 1 0 y 1
5 N A A
negative 0
side N\ B 1 . 1
1 0 0 / 1 1

0
0 ™\ 1
0\
" " 0
0 1 v f
0 s S g O 1
00 ; 1\ 0 0 r 1
0 0
1 4 \\ negative 11
hyperplane 1 Sy / positive

(w,, 6,) side

\

bad parameters: good parameters:
error rate 12 / 30 = 40% error rate 0%
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Perceptron Training: Vector Augmentation *

Before learning, we simplify notation using a X, — W,
simple trick called vector augmentation:

|dea
> omit the additional threshold parameter
6 and include it in the weight vector X, = W,

So far... W
, y

> X 1= (X1, ey Xg), W = (W1, ..oy Wy)
> fireifw-x>6 (orw-x—62>0)

X, = W,
Now
> X = (X1,...,Xq, 1), W = (w, ..., wg, —0)
> fireifw-x>0
Remark X,T_: Wg
This is just a change of notation (6 is not -

written separately any more), not of behavior! W
y

16




Perceptron Training

Learning happens by an iterative optimization. We start with
random values for w and 6, and in each iteration we ...
> ... classify a training sample x and compare the result ¢(x)
with the targeted result y |
> If necessary, we correct the neuron’s parameters such that
the output ¢(x) is adapted towards the desired output y

WY «— wold + Aw

Xl% < Ino
NN

X2 f— d(x)
>y | >0 > |=?| —
L W A yes
. / A
Xd Wd i
y
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Perceptron Training: The Delta Rule

How do we compute the 'right’ update Aw? There are different
strategies. The most famous one is the Delta Rule:

Aw = X - (y—qﬁ(x)) - X
Remarks

> We call A\ the learning rate

> Note: If x; is classified correctly, Aw = 0 — no update

1 function train_perceptron(Xi, ..., Xn, Y1, -+, ¥Yn, A) :

2 initialize w randomly

3 until convergence:

4 choose a random training sample (x,y) (with y € {0,1})
5 compute ¢(x) // classify x

6 if p(x) <> y:

7 w::w—l—)\~(y—¢(x))-x

Aw

18




The Delta Rule: Motivation

Aw:A-(y—qﬁ(x))-x

> Why does the Delta rule work?

> We illustrate what happens when a training sample is

misclassified ...

b,
U ’@@r@/ A
N 37@ W
N\ w
/

) 4
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\
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The Delta Rule: Motivation

Formal Motivation

20




The Delta Rule: Motivation

Formal Motivation

21

The Delta Rule: Code Example

22




The Delta Rule: Code Example

iteration O

10
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The Delta Rule: Code Example

10 iteration 1
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The Delta Rule: Code Example *

iteration 2

10

25

The Delta Rule: Code Example *

10 iteration 1000
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Outline

3. The Capacity of Neurons
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An Important Question...

Can a single perceptron learn any Function f : R — {—1,1}7

28




Achieving Non-Linearity by connecting Neurons

We can realize XOR by connecting multiple neurons!

X2
neuron 1 neuron 2 T
X1 - > 1 > 1 1 0
X, —> 1 > 1 ‘ %
2 %.
fe)
0,5 1,5 ) %
| — 0 E— 1 > X
0, (X;.%,) Vv _V 0,(X;,X,) | 0‘5’% 1
%
1| -1 9—» ”
¢3( ¢1 (X1 lxz)l ¢2(X1 ’X2) A
neuron 3 0,(X,,X,) ) .
0.0 0 0 0 0 (\0&
0 1 1 0 1 1 — B ; 1,
1570 1 0 1 1
1 1 1 1 0 0 | ¢1(X1’x2)
29
. neuron 1 neuron 2
Achieving Non-Linearity X, —_1 1
X, — 1 1
Remarks \0.5 1,5
e —— R |

> This is only possible because
of the neurons’ non-linear
activation functions!

- with activation functions

0, (X1 ’Xz) \

v ¢2 (X1 !xz)

1

-1

0,5
¢3( ¢1(X1’X2)1

neuron 3

0,(X;:%,) )

y=f(wy - f(wixy + woxp) + wy - F(wixg + WHx2))

- without activation functions

y=wy - (wixy + waxo) + ws - (wix1 + whxo)

/1! /1!
1 X1 - Wy Xo

This is just a linear function (and does not solve XOR)

30




%=

Achieving Non-Linearity by connecting Neurons
XA Xa) e A1)

Theorem (Learning Capacity of Networks of McP-Neurong

1

We can realize any boolean function f : {0,1}¢ — {0, 1} by J

connecting not more than 29 + 1 McP-neurons.

(e

Proof(by construction)

Lot X be a Koolean forwunde. |

%=

Proof by Construction

) For eadh U; =(Ciay G, ), w2 Cougtruct o
neson N Hut Gras ;# i; 15 Hrue.
\/\/J._-{_-'/I m@ﬁ:@: f% e Ltead
O = uwupaber of f@gfv@“ue Loy m L&
2) Counects all wewousr N .. N, o 4
Newou /\/’k Hiok P@ME@S’ L 6&

R |
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Proof by Construction: Example

TIXGAKNAXNATX ANV

XI/\—|X2/\—1X3/\X 4/\X s Vv

—1X1/\X2/\—1X3/\X4/\—|X5
X, > > 1 > -1
X2 ™ 1 X2 > -1 = 1
X, > 1 X, > -1 > ]
X, > -1 ... > 1 > 1
X5 > 1 > 1 > =
R
Vv YV V¥
1] 1 D?»
33
The McP-Neuron: Do-it-Yourself CA40—=> 4 ?
C11— o i

for a given sequence of 3 input

al Medworl
1. Sketch an McP-Neuror that models the (even) parity bit

bits, x1, X2, X3.

2. Give@ts, the above model seems to require 2" + 1
neurons."Can you do 'better’ by using more than 2 layers?

AA AC0
X, a1 T4
X2
Xz

010

; 1»_/!

Go4
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The McP-Neuron: Do-it-Yourself »*

=1
— 1
o=l

-
'><3-=—?\
o

—

o

0@@ P%L —ABs A

Fhepwous =160

\"“‘“""--—*u»‘._.-uw
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Perceptron: Activation Functions *

We can use other activation functions:

lot function arameters
P P
1.00
0.751— e = e
Zos0 ‘ - i f(X) _ 1 ifx 2 0 0
0.25 ‘ — 0 else.
0.00 " -
-4 -2 0 2 4
L0t
0.75{————f—f—1— . 1
Zoso] f f(X) T 14e—(x—0) 0
0.25 . .
o (sigmoidal)
-4 -2 0 2 4
Remarks

> The sigmoid approximates a step function, but is also
differentiable (with f'(x) = f(x) - (1 — f(x)))

36




Perceptron: Activation Functions

We can use other activation functions:

plot function parameters
5
P —
LT T f(x) = max(0, x)
N R 4 )
T/ T rectified linear unit (RELU)
0—4 -2 0 2 4

1007
0.75 _(x—y,)2
Zos0 f(X) x e 202
0.25{— H, 0
0.00 (Gaussian)
-2 2 o0 2 4

37

Can connected Perceptrons learn Any Function??

{1 1
HTheorem (Learning Capacity of Networks of Perceptrons) ‘]
I

i

By connecting multiple perceptrons with sigmoidal activation function, we can
| approximate any continuous function f : [0,1]¢ — [0, 1]. AJ

Remarks
> By connecting perceptrons, we can learn any decision boundary!

> This works with just one hidden layer (see below).
> Open Question: How many perceptrons do we need?

> Open Question: How do we find a solution that generalizes properly?

I3
In this paper we demonstrate that finite linear combinations

of compositions of a fixed, univariate function and a set of affine
functionals can uniformly approximate any continuous function of
n real variables with support in the unit hypercube. Only mild con-
ditions are imposed on the univariate function. Our results settle
an open question about representability in the class of single bid-
den layer neural networks. In particular, we show that arbitrary
decision regions can be arbitrarily well approximated by conti-
nuous feedforward neural networks with only a single internal,
hidden layer and any continuous sigmoidal nonlinearity. "

(Cybenko., G. [3])

1Try Nielsen's online demo: http://neuralnetworksanddeeplearning.com/chap4.html
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Outline *

4. Neural Networks

39
Definition: Neural Network *
Neural Network Definition Example
> A neural network is a set of > 4 neurons n, ..., N4

(partially) connected neurons o )
» activation functions

> The output signal of a neuron ai, ..., as

can be used as input signals to > — £
(multiple) other neurons NEOTICIpHE: 1,

i . > -
» The networks’ input consists of network output: z1, 2

all input signals that are not > “hidden signals”: y1, y»
derived from other neurons

> The network’s output consists of x, 11 2
all output signals that are not x, 1 -1 > 1
used as input for other neurons yaﬁ y\a—l/
> Each link between two neurons 1 e Zz,
has a weight. We denote the 1)1 Q"’
weight of the connection from
neuron / to neuron j with wj. 1)1 }E
N :

40




Neural Network: Graphical Representation *

Neural networks are weighted, directed graphs
> Neurons are nodes, connected by weighted edges
> Inputs and outputs are modeled as separate nodes

w12
X o—> 1 > =1
x & -1 1
2 Qy ’ \a_z/
y1 ﬂ Vi yz ,
111 9—»1
1113, >
A 4} £

Network Topologies
We can distinguish two general network topologies

» feedforward networks

> recurrent networks
41

Feedforward Networks: Layers *

> Feedforward networks are DAGs ( “directed acyclic graphs”),
i.e. they do not contain any cycles.

> The signal is never propagated backwards through the
network (hence “feedforward™)

> Convention: We organize feedforward networks in layers

Layer Architecture

> Every neuron is only input hidden output
connected with neurons from lEyer layers eyt
the previous and next layers

> We call two layers fully
connected in case all of their
neurons are connected

/ \

fully fully not fully
connected connected connected

42




Feedforward Networks: Computation *

Computational Model
> the signal is propagated through the network instantly

> We collect each layer's weights+biases in a matrix/vector
(for non-existing edges, entries are zero).

Example (two hidden layers)

> We collect all the signals leaving each layer in a vector
> input X = (X, ..., Xp)
: S input i tput
> hidden layer Liyy = (), .oyg) e [ ] o
> hidden layer 2: yy = (yf, ---7}’3)
> output z = (z1, ..., z4)

> Each layer applies (1) a weighted
sum (a linear operation!), and (2) a
non-linear activation f (for each neuron)
> y1=f(W - -x+b) ‘
> y2 =g(W'-y1+b')
> 7 — h(W"'Y2 + b") X Y4 Y,

Do-Forward-Computation Yourself *

Given is the foll_Qwinfg\petwork with threshold activation functions

and input x =(1,0). Compute the output z.




Do-Forward-Computation Yourself
Let's do it again, this time in matrix notation:

(1) w-fi2aet

o

i

In the following, we focus on the most basic type of neural
network, the multi-layer perceptron (MLP).

The network is feed-forward
There is only one hidden layer

>

>

> All layers are fully connected

> The network uses a sigmoidal activation function
>

We know: such a network can learn any function!

46




Recurrent Neural Networks »*

In contrast to feedforward networks, recurrent networks may

contain cycles — the signal is propagated backwards through the
network!

Example Architecture: EIman Networks

context
input context
hidden
output
47
Recurrent Neural Networks '"P”t\ |;>"textb
> The signals in the network must be clocked hidfe"
> We extend the computational model with a output

time component t =1,2, 3, ...
> Example: An OCR system recognizing a sequence of
characters x1,Xa, ... (here, t is the character number)

> At each time t, the network is fed an input x(t)

function update_elman_network(x(t))
hidden(t) := f(x(t), context(t-1))
context(t) := g(hidden(t))
output(t) := h(hidden(t))

a B~ W N

> This way, the network achieves a memory effect!

> Example “... in Europe. ltaly ..."

48
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