Machine Learning
— winter term 2016/17 —

Chapter 07:
Neural Networks |

Prof. Adrian Ulges

Masters “Computer Science”
DCSM Department
University of Applied Sciences RheinMain

Resources for the next Chapters

Online Book 1: The nice one

> Nielsen: “Neural Networks and Deep Learning”
http://neuralnetworksanddeeplearning.com
Online Book 2: The tough one

> Goodfellow, Bengio, Courville: “Deep learning”
https://www.deeplearningbook.org

(Artificial) Neural Networks.... imsge

> ... are one of the core topics of
artificial intelligence (Al)

> ... are biologically inspired: They are
mathematical models simulating the process
of “thinking” in living organisms’ brains

> ... are graphs (or networks) of interlinked
atomic processing units (neurons)

> ... are not programmed but define their own behavior entirely
through the graph'’s links and weights. These are adjusted by
training.

> ... are covered by two research fields

1. computational neuroscience

(goal: better understanding of biological processes)
2. machine learning / Al (here)

(goal: solving practical data analysis problems)

Neural Networks....

> ... have a turbulent history
A

4

1940 1950 1960 1970 1980 1990 2000 2010 2015

> ... exist in many variants

> multi-layer perceptron (in this lecture)
convolutional neural networks (in this lecture)
Boltzmann machines

RBF networks

recurrent neural networks

LSTM networks

vV v v v v Vv

> ... are the most intensely machine learning model these days
(“deep learning”)

Deep Learning Applications imags from s 6 21 141 7

Ccrwglulion Convgiulbn Fully cgnnected

g
|
g

[
2

saeEEERa:

5 Russa
Japon

Turkey Ay Ty

Poard
L] Germany
France AWarsaw
08| ray ‘Pans
w_ Ahers
Greeco Rome

-1.5 |- Portuga! u

Neural Networks: Biological Inspiration

Neurons are brain cells that send and receive electrical impulses.

Neurons: Terminology

> Cell body (soma):
center of the neuron, with
a diameter of 5 — 100um

> axon: thin, long (up to 1m) S);laps@fendrites

i i N { .
nerve fl.bre., splits and vl e (| Bf«— dendrites
transmits impulses to other
neurons

> dendrites: small,
branch-like outgrowths that axon
receive impulses and
transmit them to the soma

post-synaptic \& N membrane

. membrane
> synapses: electro-chemical

link between two neurons.
Transfers signal from axon
to dendrites via transmitter
substances.

dentrite

From Biological to Artificial Neural Networks

> Biological neural networks are (much) more complex than artificial ones

- connectivity: 10™ neurons, each connected with = 7,000 others
- adaptivity: number and connections of neurons change over time

> Biological neural networks are asynchronous and compute with rather
low frequency (1 KHz)

> The circuit layout is unknown

Learning

> Learning happens at synapses, by changing the transmitter dose

- sensitization: more transmitter, enhancing the signal
- desensitization: less transmitter, supressing the signal

Artificial Neural Networks W,
> weighted sum + activation function Y
g " e
> learning happens by adapting weights :
: : w
> memory happens by storing weights i
Outline

1. Neurons

The McP-Neuron

> The historically oldest (1943) neuron by McCulloch & Pitts
> strongly simplified model of biological neurons

> no learning yet
Definition
> input
X = (x1, ., xq) € {0,1}4

> output y € {0,1}
> weights w =
(Wl, ey Wd) c {—1, 1}d
> w; = 1: stimulating
(="anregend”)
> w; = —1: inhibitory
(:

X1 | 2X
YV
4

N

“hemmend”) X
> threshold # € R

The McP-Neuron

Computational Model
> compute the scalar product between input signal x and
weights w, namely w - x

> apply an activation function f (here, a step function),
obtaining the output y

y =f(w-x)
_{ 1 ifw-x>06
0 else f(x-w) 4

» The McP-Neuron is a function
o™? . {0,1}9 — {0,1} with
parameters w, 0

> If p"9(x) = 1, we say the X-W
neuron “is activated”, or the
neuron “fires”

The McP-Neuron

McP-Neurons: Graphical Representation

> input x
> weights w

> threshold 6 Xn =L Wm

What can McP-Neurons do?
> We can model logic gates using McP-neurons

1= -1 o X, = 1

-0,5 X, = 1 X, = 1

NOT AND m

11

From McP-Neurons to the Perceptron

McP-Neurons: Limitations
> only boolean inputs/weights/outputs

> only binary activation functions

> no learning

Extensions: The Perceptron.
> real-valued weights and inputs w, x € R

> We will introduce a learning algorithm, the Delta-rule

12

Perceptron: Graphical Interpretation »*

> The parameters w, 0 define a hyperplane
> w- X > 60: x is on the positive side

> w-Xx < 6: x is on the negative side

o~
Ny
hH ﬂ%\\ A W
*'4\4@/;‘, N\
o)A N

S, N
/1/)@ \\

negative side

Xpositive side

~

13

Outline R »*

2. Training Neurons

14

Perceptron Training: Basics *

> A neuron'’s function (or behavior) " is determined by the
parameters w and 0

> Given labeled training data: How do we find the best
parameters / the best hyperplane?

hyperplane 2

6)
ositive (Wz’ Val
P 0 0

~ \side 0 3 1 0 y 1
5 N A A
negative 0
side N\ B 1 . 1
1 0 0 / 1 1

0
0 ™\ 1
0\
" " 0
0 1 v f
0 s S g O 1
00 ; 1\ 0 0 r 1
0 0
1 4 \\ negative 11
hyperplane 1 Sy / positive

(w,, 6,) side

\

bad parameters: good parameters:
error rate 12 / 30 = 40% error rate 0%

15

Perceptron Training: Vector Augmentation *

Before learning, we simplify notation using a X, — W,
simple trick called vector augmentation:

|dea
> omit the additional threshold parameter
6 and include it in the weight vector X, = W,

So far... W
, y

> X 1= (X1, ey Xg), W = (W1, ..oy Wy)
> fireifw-x>6 (orw-x—62>0)

X, = W,
Now
> X = (X1,...,Xq, 1), W = (w, ..., wg, —0)
> fireifw-x>0
Remark X,T_: Wg
This is just a change of notation (6 is not -

written separately any more), not of behavior! W
y

16

Perceptron Training

Learning happens by an iterative optimization. We start with
random values for w and 6, and in each iteration we ...
> ... classify a training sample x and compare the result ¢(x)
with the targeted result y |
> If necessary, we correct the neuron’s parameters such that
the output ¢(x) is adapted towards the desired output y

WY «— wold + Aw

Xl% < Ino
NN

X2 f— d(x)
>y | >0 > |=?| —
L W A yes
. / A
Xd Wd i
y

17

Perceptron Training: The Delta Rule

How do we compute the 'right’ update Aw? There are different
strategies. The most famous one is the Delta Rule:

Aw = X - (y—qﬁ(x)) - X
Remarks

> We call A\ the learning rate

> Note: If x; is classified correctly, Aw = 0 — no update

1 function train_perceptron(Xi, ..., Xn, Y1, -+, ¥Yn, A) :

2 initialize w randomly

3 until convergence:

4 choose a random training sample (x,y) (with y € {0,1})
5 compute ¢(x) // classify x

6 if p(x) <> y:

7 w::w—l—)\~(y—¢(x))-x

Aw

18

The Delta Rule: Motivation

Aw:A-(y—qﬁ(x))-x

> Why does the Delta rule work?

> We illustrate what happens when a training sample is

misclassified ...

b,
U ’@@r@/ A
N 37@ W
N\ w
/

) 4
P4 4
\ :‘j&(, | 4 \Mn ew

A
VU
\ﬁ 3“‘ (:'2}{)

—B>

\

19

The Delta Rule: Motivation

Formal Motivation

20

The Delta Rule: Motivation

Formal Motivation

21

The Delta Rule: Code Example

22

The Delta Rule: Code Example

iteration O

10

23

The Delta Rule: Code Example

10 iteration 1

24

The Delta Rule: Code Example *

iteration 2

10

25

The Delta Rule: Code Example *

10 iteration 1000

26

Outline

3. The Capacity of Neurons

27

An Important Question...

Can a single perceptron learn any Function f : R — {—1,1}7

28

Achieving Non-Linearity by connecting Neurons

We can realize XOR by connecting multiple neurons!

X2
neuron 1 neuron 2 T
X1 - > 1 > 1 1 0
X, —> 1 > 1 ‘ %
2 %.
fe)
0,5 1,5) %
| — 0 E— 1 > X
0, (X;.%,) Vv _V 0,(X;,X,) | 0‘5’% 1
%
1| -1 9—» ”
¢3(¢1 (X1 lxz)l ¢2(X1 ’X2) A
neuron 3 0,(X,,X,)) .
0.0 0 0 0 0 (\0&
0 1 1 0 1 1 — B ; 1,
1570 1 0 1 1
1 1 1 1 0 0 | ¢1(X1’x2)
29
. neuron 1 neuron 2
Achieving Non-Linearity X, —_1 1
X, — 1 1
Remarks \0.5 1,5
e —— R |

> This is only possible because
of the neurons’ non-linear
activation functions!

- with activation functions

0, (X1 ’Xz) \

v ¢2 (X1 !xz)

1

-1

0,5
¢3(¢1(X1’X2)1

neuron 3

0,(X;:%,))

y=f(wy - f(wixy + woxp) + wy - F(wixg + WHx2))

- without activation functions

y=wy - (wixy + waxo) + ws - (wix1 + whxo)

/1! /1!
1 X1 - Wy Xo

This is just a linear function (and does not solve XOR)

30

%=

Achieving Non-Linearity by connecting Neurons
XA Xa) e A1)

Theorem (Learning Capacity of Networks of McP-Neurong

1

We can realize any boolean function f : {0,1}¢ — {0, 1} by J

connecting not more than 29 + 1 McP-neurons.

(e

Proof(by construction)

Lot X be a Koolean forwunde. |

%=

Proof by Construction

) For eadh U; =(Ciay G,), w2 Cougtruct o
neson N Hut Gras ;# i; 15 Hrue.
\/\/J._-{_-'/I m@ﬁ:@: f% e Ltead
O = uwupaber of f@gfv@“ue Loy m L&
2) Counects all wewousr N .. N, o 4
Newou /\/’k Hiok P@ME@S’ L 6&

R |

32

Proof by Construction: Example

TIXGAKNAXNATX ANV

XI/\—|X2/\—1X3/\X 4/\X s Vv

—1X1/\X2/\—1X3/\X4/\—|X5
X, > > 1 > -1
X2 ™ 1 X2 > -1 = 1
X, > 1 X, > -1 >]
X, > -1 ... > 1 > 1
X5 > 1 > 1 > =
R
Vv YV V¥
1] 1 D?»
33
The McP-Neuron: Do-it-Yourself CA40—=> 4 ?
C11— o i

for a given sequence of 3 input

al Medworl
1. Sketch an McP-Neuror that models the (even) parity bit

bits, x1, X2, X3.

2. Give@ts, the above model seems to require 2" + 1
neurons."Can you do 'better’ by using more than 2 layers?

AA AC0
X, a1 T4
X2
Xz

010

; 1»_/!

Go4

34

The McP-Neuron: Do-it-Yourself »*

=1
— 1
o=l

-
'><3-=—?\
o

—

o

0@@ P%L —ABs A

Fhepwous =160

\"“‘“""--—*u»‘._.-uw

35

Perceptron: Activation Functions *

We can use other activation functions:

lot function arameters
P P
1.00
0.751— e = e
Zos0 ‘ - i f(X) _ 1 ifx 2 0 0
0.25 ‘ — 0 else.
0.00 " -
-4 -2 0 2 4
L0t
0.75{————f—f—1— . 1
Zoso] f f(X) T 14e—(x—0) 0
0.25 . .
o (sigmoidal)
-4 -2 0 2 4
Remarks

> The sigmoid approximates a step function, but is also
differentiable (with f'(x) = f(x) - (1 — f(x)))

36

Perceptron: Activation Functions

We can use other activation functions:

plot function parameters
5
P —
LT T f(x) = max(0, x)
N R 4)
T/ T rectified linear unit (RELU)
0—4 -2 0 2 4

1007
0.75 _(x—y,)2
Zos0 f(X) x e 202
0.25{— H, 0
0.00 (Gaussian)
-2 2 o0 2 4

37

Can connected Perceptrons learn Any Function??

{1 1
HTheorem (Learning Capacity of Networks of Perceptrons) ‘]
I

i

By connecting multiple perceptrons with sigmoidal activation function, we can
| approximate any continuous function f : [0,1]¢ — [0, 1]. AJ

Remarks
> By connecting perceptrons, we can learn any decision boundary!

> This works with just one hidden layer (see below).
> Open Question: How many perceptrons do we need?

> Open Question: How do we find a solution that generalizes properly?

I3
In this paper we demonstrate that finite linear combinations

of compositions of a fixed, univariate function and a set of affine
functionals can uniformly approximate any continuous function of
n real variables with support in the unit hypercube. Only mild con-
ditions are imposed on the univariate function. Our results settle
an open question about representability in the class of single bid-
den layer neural networks. In particular, we show that arbitrary
decision regions can be arbitrarily well approximated by conti-
nuous feedforward neural networks with only a single internal,
hidden layer and any continuous sigmoidal nonlinearity. "

(Cybenko., G. [3])

1Try Nielsen's online demo: http://neuralnetworksanddeeplearning.com/chap4.html

38

Outline *

4. Neural Networks

39
Definition: Neural Network *
Neural Network Definition Example
> A neural network is a set of > 4 neurons n, ..., N4

(partially) connected neurons o)
» activation functions

> The output signal of a neuron ai, ..., as

can be used as input signals to > — £
(multiple) other neurons NEOTICIpHE: 1,

i . > -
» The networks’ input consists of network output: z1, 2

all input signals that are not > “hidden signals”: y1, y»
derived from other neurons

> The network’s output consists of x, 11 2
all output signals that are not x, 1 -1 > 1
used as input for other neurons yaﬁ y\a—l/
> Each link between two neurons 1 e Zz,
has a weight. We denote the 1)1 Q"’
weight of the connection from
neuron / to neuron j with wj. 1)1 }E
N :

40

Neural Network: Graphical Representation *

Neural networks are weighted, directed graphs
> Neurons are nodes, connected by weighted edges
> Inputs and outputs are modeled as separate nodes

w12
X o—> 1 > =1
x & -1 1
2 Qy ’ \a_z/
y1 ﬂ Vi yz ,
111 9—»1
1113, >
A 4} £

Network Topologies
We can distinguish two general network topologies

» feedforward networks

> recurrent networks
41

Feedforward Networks: Layers *

> Feedforward networks are DAGs (“directed acyclic graphs”),
i.e. they do not contain any cycles.

> The signal is never propagated backwards through the
network (hence “feedforward™)

> Convention: We organize feedforward networks in layers

Layer Architecture

> Every neuron is only input hidden output
connected with neurons from lEyer layers eyt
the previous and next layers

> We call two layers fully
connected in case all of their
neurons are connected

/ \

fully fully not fully
connected connected connected

42

Feedforward Networks: Computation *

Computational Model
> the signal is propagated through the network instantly

> We collect each layer's weights+biases in a matrix/vector
(for non-existing edges, entries are zero).

Example (two hidden layers)

> We collect all the signals leaving each layer in a vector
> input X = (X, ..., Xp)
: S input i tput
> hidden layer Liyy = (), .oyg) e [] o
> hidden layer 2: yy = (yf, ---7}’3)
> output z = (z1, ..., z4)

> Each layer applies (1) a weighted
sum (a linear operation!), and (2) a
non-linear activation f (for each neuron)
> y1=f(W - -x+b) ‘
> y2 =g(W'-y1+b')
> 7 — h(W"'Y2 + b") X Y4 Y,

Do-Forward-Computation Yourself *

Given is the foll_Qwinfg\petwork with threshold activation functions

and input x =(1,0). Compute the output z.

Do-Forward-Computation Yourself
Let's do it again, this time in matrix notation:

(1) w-fi2aet

o

i

In the following, we focus on the most basic type of neural
network, the multi-layer perceptron (MLP).

The network is feed-forward
There is only one hidden layer

>

>

> All layers are fully connected

> The network uses a sigmoidal activation function
>

We know: such a network can learn any function!

46

Recurrent Neural Networks »*

In contrast to feedforward networks, recurrent networks may

contain cycles — the signal is propagated backwards through the
network!

Example Architecture: EIman Networks

context
input context
hidden
output
47
Recurrent Neural Networks '"P”t\ |;>"textb
> The signals in the network must be clocked hidfe"
> We extend the computational model with a output

time component t =1,2, 3, ...
> Example: An OCR system recognizing a sequence of
characters x1,Xa, ... (here, t is the character number)

> At each time t, the network is fed an input x(t)

function update_elman_network(x(t))
hidden(t) := f(x(t), context(t-1))
context(t) := g(hidden(t))
output(t) := h(hidden(t))

a B~ W N

> This way, the network achieves a memory effect!

> Example “... in Europe. ltaly ..."

48

References *

(1]

(2]

(3]

(4]

[5]

[6]

[7]

fdecomite: Minsky & Papert Model.
https://flic.kr/p/5VsZ1M (retrieved: Nov 2016).

Google DeepDream robot: 10 weirdest images produced by Al 'inceptionism’ and users online (Photo:
Reuters).

http://www.straitstimes.com/asia/east-asia/
alphago-wins-4th-victory-over-lee-se-dol-in-final-go-match (retrieved: Nov 2016).

G. Cybenko.
Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals, and Systems (MCSS), 2(4):303-314, Dec. 1989.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26, pages 3111-3119. Curran Associates, Inc., 2013.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, |. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis.

Human-level control through deep reinforcement learning.

Nature, 518(7540):529-533, 02 2015.

M.-A. Russon.

Google DeepDream robot: 10 weirdest images produced by Al 'inceptionism' and users online.
http://www.ibtimes.co.uk/
google-deepdream-robot-10-weirdest-images-produced-by-ai-inceptionism-users-online-1509518
(retrieved: Nov 2016).

C. Szegedy.

Building a deeper understanding of images (Google Research Blog).
https://research.googleblog.com/2014/09/building-deeper-understanding-of-images.html
(retrieved: Nov 2016).

49

