
Machine Learning
– winter term 2016/17 –

Chapter 08:
Neural Networks II

Prof. Adrian Ulges
Masters “Computer Science”

DCSM Department
University of Applied Sciences RheinMain

14. November 2016

1

The Multi-layer Perceptron (MLP)

a
1

1

a
n

1

a
1

2

...

a
m

2

a
o

3

a
1

3

... ...

a1 = (a
1

1,...,a
n

1) a2 a3

...

a
1

L

...

a
q

L

aL-1... aL

a
1

L-1

...

a
p

L-1

In the following, we focus on the most common type of neural
network, the multi-layer perceptron (MLP).

I The network is feed-forward

I There are L layers in total

I All layers are fully connected

I We have already seen: Such a network can learn any
continuous function (in theory)!

2

MLP: Encoding Learning Problems

I Learning problems are represented as pairs of inputs
and desired outputs

I x = (x1,, xd) input (feature vector)

I t = (t1, ..., tp) desired outputs (“targets”)

I Goal: The network should approximate the target!

a
1

1

a
n

1

a
1

2

...

a
m

2

a
o

3

a
1

3

... ...

a1 = (a
1

1,...,a
n

1) a2 a3

...

aL-1... aL

a
1

L-1

...

a
p

L-1

...

training
input x

training
target t

3

MLP Learning Problems: Examples image from [5]

Classification: Digit Recognition

I x = (x1, ..., x748)

I target = one-hot
encoding of class

I Example: picture shows a 4→
t = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Regression: Gaze Tracking

I x = (x1, ..., x748):
an eye image

I t = (t1, t2):
the eye’s viewing direction
(two polar coordinates)

4

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

target vectors

Outline

1. The Backpropagation Algorithm

2. Backpropagation: Batching

3. Lost in Hyperparameter Space

4. Extensions to Backpropagation

5. Some Backpropagation Parameters

5

MLP: Learning

Learning in neural networks works just like for single neurons. We
initialize all weights with random values. In each iteration, we...

I choose a training sample (x,t) and feed it to the network

I compare the result aL with the target t

I correct the weights of the network such that the output
moves towards the targets

Remarks

I The difference to training single neurons: We need to adapt
weights across multiple layers of the network!

6

MLP: Learning

The Phases of Learning

Each learning iteration
consists of two phases

1. Forward phase:
Feed x to the net.
The signal propagates forward through the layers. The
activations of all neurons, a1, ..., aL, are computed.

2. Backward phase: We compare aL with t and update the
weights (and biases) in all layers l = L, (L− 1), ..., 2, 1:

I Wl := Wl + ∆Wl (weights)
I bl := bl + ∆bl (biases)

7

...
...

training
input x

forward phase

a1 a2 a3 aL-1... aL

...
...

training
input x

training
target t

WLW2W1

backward phase

Backpropagation

I How do we determine ∆Wl and ∆bl?

I Like for the Delta rule, we formulate a minimization problem

I Goal: Minimize the error between targets and output

E (W1,W2, ...,WL,b1,b2, ...,bL) =

p∑
k=1

(aLk − tk)2

I We optimize using gradient descent with learning rate λ

∆w l
ij := −λ · ∂E

∂w l
ij

∆blj := −λ · ∂E

∂blj

I The resulting algorithm is called backpropagation.

8

MLP: Backpropagation

9

a
1

1

a
n

1

a
1

2

...

a
m

2

a
o

3

a
1

3

... ...

a1 = (a
1

1,...,a
n

1) a2 a3

...

a
1

L

...

a
q

L

aL-1... aL

a
1

L-1

...

a
p

L-1

MLP: Backpropagation

10

MLP: Backpropagation

11

MLP: Backpropagation

12

MLP: Backpropagation

13

MLP: Backpropagation

14

Backpropagation: Algorithm

1 function BACKPROP(x1, ..., xn, t1, ..., tn, λ) :

2 W1,W2, ...,WL, b1, b2, ..., , bL := initialize()
3 repeat
4 (x, t) := choose sample()

5 feed x to the net, compute the activations a1, ..., aL // forward phase

6 δL := (aL − t) · f ′(zL)
7 for layer l in L, L-1, ..., 1:

8 w l
ij := w l

ij − λ · al−1
i · δlj for all i , j // update weights

9 bl
j := bl

j − λ · δlj for all j // update biases

10 δl−1 := (Wl · δl)� f ′(zl−1) // update errors for propagation

11 until weights+biases stop changing
12

Remarks
I λ > 0 – the learning rate – is tricky to pick! (Why?)

I Often, we decrease λ linearly until reaching tmax iterations:

λt := (1− αt) · λhigh + αt · λlow
where t is the number of iterations and αt = min(t/tmax , 1).

15

Backpropagation: Do-it-Yourself

I Does backpropagation always reach the global minimum of
the error function E ?

I Does backpropagation always converge?

16

Outline

1. The Backpropagation Algorithm

2. Backpropagation: Batching

3. Lost in Hyperparameter Space

4. Extensions to Backpropagation

5. Some Backpropagation Parameters

17

Backpropagation: Batching image from [4]

1. The above algorithm updates weights based on one training
example (x, t).

w l
ij := w l

ij − λ · al−1
i · δlj

2. Overall, we want to minimize the error over all training
samples (x1, t1), ..., (xn, tn), however!

w l
ij := w l

ij − λ ·
1

n

n∑
k=1

al−1,k
i · δl,kj

We call these versions (2.) gradi-
ent descent vs. (1.) stochastic
gradient descent. What diffe-
rence does it make? Steps in gra-
dient descent are

I smoother (→ larger λ)

I a lot more expensive

I parallelizable!
18

Backpropagation: Minibatch Version
Usually, we follow a compromise

I We split the training data into subsets of size B,
called mini-batches

I We update the weights/biases by averaging over
all samples of a mini-batch

I We run a few iterations of training and move on
to the next minibatch

1 function BACKPROP MINIBATCH(x1, ..., xB , t1, ..., tB , λ):
2 // runs a few iterations of training on a mini-batch of B samples
3 for a few iterations:
4 for each b = 1, ...,B:

5 compute activations a1,b, ..., aL,b // forward phase

6 δL,b := (aL,b − tb) · f ′(zL,b)
7 for layer l in L, L-1, ..., 1:

8 w l
ij := w l

ij − λ · 1
B

∑B
b=1 a

l−1,b
i · δl,bj for all i , j // update weights

9 bl
j := bl

j − λ · 1
B

∑B
b=1 δ

l,b
j for all j // update biases

10 δl−1,b := (Wl · δl,b)� f ′(zl−1,b) for b=1,..,B // update errors

11

19

Minibatch: Best Size?

I If the mini-batches are too small, the gradient descent steps
become very “noisy”. This noise is known to decrease with
1/
√

B.

I If the mini-batches are too large, the single steps become
very expensive.

I Common approach: Choose the mini-batch size to fit your
(GPU) memory → reduces overhead for loading and storing
training data, and makes maximum use of parallelization!

“To set the minibatch size, plot the validation accuracy versus time
(as in, real elapsed time, not epoch!), and choose whichever
mini-batch size gives you the most rapid improvement in accuracy.”

(Nielsen: “Neural Networks and Deep Learning”)

20

MLP: Training Example

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 iteration 0

21

Outline

1. The Backpropagation Algorithm

2. Backpropagation: Batching

3. Lost in Hyperparameter Space

4. Extensions to Backpropagation

5. Some Backpropagation Parameters

22

What’s going wrong here? image from [1]

23

Neural Network Training: Parameters

Network Topology

I number of layers

I number of nodes per layer

I connectivity between layers

I Activation functions

Training

I learning rate

I number of iterations

I size of mini-batches

I initialization of weights+biases

I cost Function

Others
I input data: Preprocessing (normalization, balancing)

I dropout (later...)
24

Lost in Hyperparameter Space
“When you understand something poorly - as the explorers
understood geography, and as we understand neural nets today - it’s
more important to explore boldly than it is to be rigorously correct
in every step of your thinking.”

(M. Nielsen)

Tricks of the Trade
I Prioritize! Investigate the most unclear parameters first, set

reasonable values wherever possible.

I Be quick! Iterate quickly over small parts of the data to find
promising settings.

I Hang in there! This is a hard problem – it has taken ML
research 50 years to ’get neural network training right’.

Reads
I Bengio: “Practical recommendations for gradient-based

training of deep architectures” (2012).

I Grégoire Montavon, Geneviève Orr, and Klaus-Robert Müller:
“Neural Networks: Tricks of the Trade” (2012).

25

Outline

1. The Backpropagation Algorithm

2. Backpropagation: Batching

3. Lost in Hyperparameter Space

4. Extensions to Backpropagation

5. Some Backpropagation Parameters

26

Cost Functions in Backpropagation

Backpropagation is just gradient descent of a high-dimensional
cost function E . But what does E “look like”?

E(W,b)

W,b

“Most practitioners believed that local minima were a common
problem plaguing neural network optimization. Today, that does not
appear to be the case. [...] Local minima are in fact rare compared
to another kind of point with zero gradient: a saddle point.”

(Courville et al. [3])

27

Cost Functions in Backpropagation: Example

I E is usually flat around saddle points.

I Learning terminates (“starves”) on plateaus!

I Choosing a good learning rate λ becomes difficult!

28

Improvement: Momentum image from [3]

I Idea: smooth the direction of the
gradient over training iterations.

I Let ∇E t be the gradient update
in iteration t. We compute

v t = α · v t−1 +∇E t

I We update the weights (and biases):

W := W − λ · v t
(

instead of W := W − λ · ∇E t
)

I α is the strength of momentum. Think of it in terms of
1/(1− α) (“geometric series”): For α = 0.9, the maximum
speed is 10× the gradient length.

I Momentum helps training keep a stable directions and ’roll
over’ plateaus.

29

Variations to Backpropagation: RMSProp [3] (Chapter 8)

RMSProp

I For each parameter, a separate multiplier 1√
r+δ

is learned.

I Progress is increased in weakly sloped directions

I no momentum (but could be included, though)

30

Variations to Backpropagation: ADAM [3] (Chapter 8)

31

Variations to Backpropagation: ADAM [3] (Chapter 8)

Adam (=”Adaptive Moments”)

I Like RMSProp: uses dimension-specific multiplier (see r)

I Unlike RMSProp: uses momentum (see s)

I Unlike RMSProp: bias correction (see r̂, ŝ), since initially
r = s = 0

32

Outline

1. The Backpropagation Algorithm

2. Backpropagation: Batching

3. Lost in Hyperparameter Space

4. Extensions to Backpropagation

5. Some Backpropagation Parameters

33

MLP: Training Example (see above)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 iteration 0

34

MLP: Training Example (see above)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 iteration 20

35

MLP: Training Example (see above)

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 iteration 1000

36

MLP: Training Example

0 200 400 600 800 10000.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
error (training data)
error (test data)

37

Backpropagation: Early Stopping

When to stop Backpropagation?

I One iteration through all training data is called an epoch.

I Surprisingly, optimizing for as many epochs as possible is not
the best answer! The reason: Overfitting.

I During optimization, record the error rate on held-out
validation set.

I Stop backpropagation once validation set error does not
improve significantly.

Remarks
I The ’right’ number of epochs varies depending on training

data size, number of hidden units, noise, the underlying
distributions, and the starting point of optimization!

38

Weight Initialization

Symmetry Breaking

I What went wrong in the MNIST
Example above?

I All weights and biases were initialized with zeros!

I All neurons of a layer get exactly the same updates

I Effectively, the network learns only one neuron per layer!

I Even with small random initialization, different neurons may
end up learning the same features/weights :-(

I We need strong randomization for symmetry breaking!
39

Weight Initialization

I So we initialize with super-large random numbers, right?
Let’s draw weights W from [−1000, 1000].

I What happens with the sigmoid’s activation f if the weights
become very high?

I Goal: Initialize the weights such that we are close to the
’interesting’ parts of the activation function!

40

Weight Initialization

I Larger initial weights will yield better symmetry breaking.
I Smaller initial weights lead to more effective learning.
I Balancing these effects is crucial!

Sample Heuristics

1. Given a layer with m(n) input(output) neurons, initialize [2]:

Wij ∼ U
(
−
√

6

m + n
,

√
6

m + n

)
for all edges (i,j) in the layer

2. Sparse initialization: each neuron gets exactly k (randomly
sampled) non-zero inputs (avoids small weights for big layers)

3. Grid search: treat initialization as a hyperparameter and
search for a good value using cross-validation

4. Inspection: look at activations of the different layers. Where
the variance of activations is low, increase the variance of
initial weights.

41

Backpropagation: Training Data Issues

Balancing Training Data

I Sometimes, we can collect many samples from one class but
only few from another

I Example (spam filtering): Let 90% of all e-mails be spam. An
MLP classifying any mail as spam has an error of only 10% →
local minimum!

I We call such training data unbalanced

I To avoid local minima when learning, we usually balance
training data: We use (about) equally many training samples
from any class.

Normalizing Training Data

I For large absolute input values, the sigmoid is very flat →
slow learning!

I Common Strategy: normalize training samples to be ≈ 0

42

References
[1] The MNIST Database of Handwritten Digits.

http://yann.lecun.com/exdb/mnist/ (retrieved: Oct 2016).

[2] X. Glorot and Y. Bengio.
Understanding the Difficulty of Training Deep Feedforward Neural Networks.
In Proc. AISTATS-10, volume 9, pages 249–256, 2010.

[3] I. Goodfellow, Y. Bengio, and A. Courville.
Deep Learning.
Book in preparation for MIT Press (retrieved Nov 2016), 2016.

[4] A. Holehouse.
Stanford Machine Learning (Transcript of Course by Prof. Andrew Ng).
http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html (retrieved: Nov 2016).

[5] X. e. a. Zhang.
Appearance-based Gaze Estimation in the Wild (Video from Project Webpage).
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/

gaze-based-human-computer-interaction/

appearance-based-gaze-estimation-in-the-wild-mpiigaze/ (retrieved: Nov 2016).

43

http://yann.lecun.com/exdb/mnist/
http://www.holehouse.org/mlclass/17_Large_Scale_Machine_Learning.html
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild-mpiigaze/
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild-mpiigaze/
https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/research/gaze-based-human-computer-interaction/appearance-based-gaze-estimation-in-the-wild-mpiigaze/

	The Backpropagation Algorithm
	Backpropagation: Batching
	Lost in Hyperparameter Space
	Extensions to Backpropagation
	Some Backpropagation Parameters

