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Deep Learning Applications images from [14] [16] [1] [13] [18]

In this Chapter

I Why deep learning is hard

I Tricks to make it work

I Convolutional neural networks

I State-of-the-art in Neural Networks
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Deep Learning: Characterization

Deep Learners are models which ...

... consist of “many” layers of nonlinear units (=neurons)
(many = at least 3?)

... are in contrast to “shallow” learners
(e.g., logistic regression, SVMs → 1 layer)

... learn representations of data whose abstraction increases
through the layers

... use these representations instead of hand-crafted features

... often learn these representations in an unsupervised manner
on large-scale datasets

4



Backpropagation (Reprise)

training
target t

W,

b

LL-1...

...

L-2L-3

W,

b
W,

b

backward phase

Backprop Formulas

δL =
(

aL − t
)
� f ′(zL)

δl =
(

W l+1 · δl+1
)
� f ′(zl)

∆w l
ij = −λ · δlj · al−1
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∆bl
j = −λ · δlj
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Key Problem: Unstable Gradients

“As we move from the output layer to earlier layers the gradient
tends to either vanish (the vanishing gradient problem) or explode
(the exploding gradient problem). Since the gradient is the signal
we use to train, this causes problems.”

(Nielsen, “Neural Networks and Deep Learning”)

Dummy Network (1 neuron per layer, sigmoid activation f , see [15])

4321

w1 w2 w3 w4

b1 b2 b3 b4
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Unstable Gradients: Example
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Vanishing Gradients: Example image from [15]

I a neural network trained on MNIST data
(30 neurons per hidden layer, 4 hidden layers, fully connected)

I The delta-values in the different layers, δ1, δ2, ..., δL,
indicate how strong the weights change during learning.

I We measure this “speed” of learning in the different layers
by ||δ1||, ||δ2||, ..., ||δL||.

I Note that the scale is logarithmic
(Layer 1 learns 100× slower than Layer 4)
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Deep Learning: What to do?

Improving Optimization (= avoid unstable gradients)

I different loss function (→ cross-entropy)

I different activation function (→ RELU)

I variations to backpropagation (→ momentum, Chapter 08)

I advanced techniques

Improving Generalization (= avoid overfitting)

I regularization + dropout

I network topology (CNNs)

I more processing power (GPUs)
I larger training sets

I Pascal VOC Challenge (2005-2012): 11K training images
I ILSVRC (2012-...): 1,3 mio. training images
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Trick 1: Cross-Entropy Cost

Example: a poorly initialized neuron (see [15])

w=3

b=3

input:

x=1
output:

a=0,99
target:

t=0,00

I Our old cost function (squared error): E = 1
2 (a− t)2 ...

I ... leads to weight updates of ∂E
∂w = (a− t) · f ′(z)

I ... and f ′(z) is very small!

I We plot the learning progress over the iterations: How fast
does the neuron move towards the desired output 0?
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Trick 1: Cross-Entropy Cost
I Idea: Our cost must compensate for small values of f ′

I Use the Cross Entropy as cost (see Chapter 02)

C (aL) = −
∑
k

tk · log(aLk) + (1− tk) · log(1− aLk)

= −log(1− a) // in our case

I C penalizes our ’far off’ neuron much stronger!
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Trick 1: Cross-Entropy Cost

With cross-entropy, our neuron learns much faster!
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Trick 2: Rectified Linear Units (RELUs)

sigmoid activation RELU activation
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Backpropagation works with RELUs just like with sigmoids -
just with a different f ′ term.

Sigmoid

I learning slows down for small and large inputs

Rectified Linear Unit
I learning is fast for positive inputs

I the neuron stops learning entirely for negative inputs

I (much) more efficient computation
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Trick 2: Rectified Linear Units (RELUs)

Practical Advice
I The input of RELU neurons should tend to be larger than zero
→ initialize with a slightly higher bias!

I Let a1, a2, ..., an be the outputs of a RELU layer. If we want
them to be scaled to [0, 1] (say, in classification), we simply
rescale the RELU unit’s output using a so-called softmax(

a1, a2, ..., an
)
7→
( ea1∑

i eai
,

ea2∑
i eai

, ...,
ean∑
i eai

)
Example

1, 3, 1, 7 7→ 2%, 11%, 2%, 85%

−3, 0, 0.5, −15 7→ 2%, 37%, 61%, 0%

Remarks
I RELU activations have been vital to image recognition [10, 11]

I “We do not yet have a solid theory of how activation
functions should be chosen.” [15]
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Advanced Techniques image from [5]

More Complicated Ways to Facilitate Deep Learning

I pretraining: start training with a simple network, then add
incremental layers [5]

I linear (sub-)paths through the network
(prevent the gradient from dying off)

I skip connections bypassing several layers

I adding extra copies of the output to early layers [19]
(makes the lowest layers receive a large gradient)
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Convolution for Images

We view images as discrete 2D signals s : Z× Z→ {1, ...,M}.
Filters transform images s into other images s ′. We focus on a
particular kind of filter: FIR (finite-impulse-response) filters:

Definition (FIR Filter for Images)

Let s be a (2D) signal (i.e., an image), M ∈ N, and
w−M,−M ... w−M,0 ... w−M,M

...

w0,−M ... w0,0 ... w0,M

...

wM,−M ... wM,0 ... wM,M


be a filter mask. Then, an finite impulse response filter computes:

s ′(x , y) =
M∑

u=−M

M∑
v=−M

s(x − u, y − v) · wu,v
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Convolution for Images
I We place the mask at every position of the image
I We compute the weighted sum of the pixel intensities,

weighted by the mask’s values
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Convolution for Images: Example 1 image: Christoph Lampert

The mean filter blurs the input image
w−2,−2 w−2,−1 w−2,0 w−2,1 w−2,2

w−1,−2 w−1,−1 w−1,0 w−1,1 w−1,2

w0,−2 w0,−1 w0,0 w0,1 w0,2

w1,−2 w1,−1 w1,0 w1,1 w1,2

w2,−2 w2,−1 w2,0 w2,1 w2,2

 =
1

25
·


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



Filter T
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Convolution for Images: Example 2

What do these Filters do?1 0 −1
2 0 −2
1 0 −1

  1 2 1
0 0 0
−1 −2 −1


These are the Sobel filters: They are commonly used to compute

the partial derivatives ∂s(x ,y)
∂x , ∂s(x ,y)

∂y of an image (which indicate
the edges of an image)

Filter T
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Traditional Use of Convolution/Filters image from [4]

Key Idea: Even when images from the same class are not globally
similar, they share certain local characteristics

Approach: Hand-engineer Filters to detect Local Features

I robust to changes of illumination, pose, background, ...

I state-of-the-art until 2011 (and still used frequently today)

I SIFT, SURF, HoG, Canny, ORB, ...

I more in Chapter 03
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Step 1: Local Feature Detection

Example: The DoG (“difference-of-Gaussians”)
filter detects blobs (dark regions surrounded
by a bright background)

I There are other detectors for corners, edges, etc.

I We usually apply filters of multiple sizes (→ scale invariance)

23
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Step 2: Local Feature Matching image from [7]

After detecting local features, we match them
to recognize objects
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Filters in Neural Networks
mask input images feature maps

I By carefully designing the filter mask, we can scan the image
for certain features

I Here, I designed a mask to detect the T-junction in the “4”.
I The result is called a feature map

Filters in Neural Networks
I Layer 1: run feature detectors over the image

I Layer 2: classify based on which features have been detected

I This way, neural networks can learn their filters by
backpropagation!

I We call them convolutional neural networks (CNNs)
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Convolutional Layers images from [15]

Convolutional Layers apply Filters

I the input neurons are the input image’s pixels

I the hidden neurons (1st layer) are the feature map’s pixels

I the weights are the entries of the (say, 5× 5) filter mask
I the activation of neuron (or pixel) (j , k) in the feature map is

ajk = f
(
b +

2∑
u=−2

2∑
v=−2

wuv · xj+u,k+v

)
I short for the whole image (with the convolution operator ∗):

a = f
(

b + (W ∗ x)
)
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Convolutional Layers images from [15]

Discussion

I CNNs need far less weights: With a 28× 28 input image and
24× 24 output map, the number of weights is:

I fully connected layer: 28× 28× 24× 24 (+242) ≈ 450, 000
I convolutional layer: 5× 5 (+1) = 26

I This is called weight sharing, and it’s great:
less parameters → less overfitting!

I Convolutional neurons have a limited receptive field (e.g.,
5× 5) → instead of detecting global features, convolutional
neurons detect local features.
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Convolutional Layers images from [15]

I Because we require far less weights,
we can spend them on multiple
feature maps!

I CNNs use hundreds of filters per layer.

I Some example of feature masks learned from MNIST data
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CNNs: Layer Stacking

„person“

input image layer 1 layer 2 layer 3 layer 4 layer 5
(fully connected)

I A single convolutional layer is quite limited:
Its receptive fields are tiny and prone to noise.

I Idea: Feed feature maps to a subsequent layer, which
constructs more complex features (→ abstraction)

I Multiple layers: edges → pupils → eyes → faces → persons
I With increasing layers ...

I ... the level of abstraction increases
I ... the accuracy of localization decreases
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CNNs: Layer Stacking

input image

Layer 1 Layer 2

I The second layer has not one input image, but multiple ones
(namely, the feature maps from the first layer)!

I A neuron n in the second layer should be allowed to
combine inputs from multiple feature maps of Layer 1

I Solution: n can access all feature maps within a local area,
i.e. n’s local receptive field has size 5× 5×20:

ap+1
jk = f

(
b +

2∑
u=−2

2∑
v=−2

20∑
f =1

wuvf · apj+u,k+v ,f

)
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CNNs: Layer Stacking

Example

I Layer 1 takes a 28× 28 input image and filters it with 20
masks of size 5× 5, obtaining 20 feature maps.

I Note: with a 5× 5 convolution, the image reduces to 24× 24
(the filter mask must fit image).

I We add a second convolutional layer to the CNN

Layer dims(in) mask #filters dims(out)

1 28× 28 5× 5 20 24× 24× 20

2 24× 24× 20 5× 5×20 30 20× 20× 30

Remarks
I Each layer’s feature maps form a “3D matrix” (or tensor)

I This is why Google’s deep learning library is called tensorflow.
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CNNs: Layer Stacking → Visualization images from [20]

I A CNN trained on 1000 object categories with 1,3 mio. images
I We visualize the features the CNN has learned, by ...

I ... feeding the network input images
I ... recording the strongest activation in a given layer
I ... projecting this activation back to pixel space using

deconvolution

I We start with Layers 1 and 2 ...
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CNNs: Layer Stacking → Visualization images from [20]

I ... and continue with Layers 3 ...
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CNNs: Layer Stacking → Visualization images from [20]

I ... to Layers 4 and 5.
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CNNs: Pooling Layers image from [15]

I We introduce pooling layers
between the convolutional layers

I These scale down the feature
maps (it is enough to know roughly
where a feature occurs).

Variations of Pooling

I Max-Pooling: take the maximum activation of the feature
detector in the receptive field.

I L2-Pooling: take the L2 norm of the activations in the
receptive field
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CNNs: Minimal Architecture image from [15]

Remarks
I This CNN can be trained using plain backpropagation

(see [9] for details)

I For convolutional layers, the error ∆wuvf is collected from
all pixels in the output mask.

I For pooling layers, the error is just forwarded to the exact
pixel where it came from.
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Example (Object Recognition): LeNet image from [12]

I 341K connections but only 90K parameters (weight sharing)

I applied to handwriting recognition
(Demo: http://yann.lecun.com)

I 1998 (when SVMs were the method of choice...)
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Example (Object Recognition): AlexNet images from [11], [2]

I key trigger for deep
learning boom

I Layers: 5 × convolution,
3 FC layers, RELUs,
dropout

I GPU implementation,
network partitioned (did not fit 1 GPU)

I outstanding winner of ILSVRC’12 (top-5-error: 15.3%,
second-best: 26.2%)
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Example (Object Recognition): GoogLeNet images from [19] [3]

I increased depth (22 layers) and width of network
I but: 12 × fewer parameters than AlexNet (1×1 convolutions)
I Codename: Inception (a network within a network)
I human-level object recognition (ILSVRC: 6.8% top-5-error)
I A. Karpathy: I sat down and went

through the [...] careful annotation
process myself. [...] I became very
good at identifying breeds of dogs.
[...] My own error in the end

turned out to be 5.1%.
40



Transfer Learning

“Transfer learning is the improvement of learning in a new task
through the transfer of knowledge from a related task that has
already been learned.”

(L. Torrey, J. Shavlik)

I Deep Learning allows us to train strong, complex models
on large-scale training sets

I Key question: Can I adapt existing models to new domains
(where little training data may be available)?

Examples

I I have trained a deep network for keyword detection on
Wikipedia. Can I apply that to my customer’s E-Mails?

I Can I reuse GoogLeNet (trained on cars, cats, dogs, etc.)
to identify other objects?
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Transfer Learning with GoogLeNet

I Recall GoogLeNet’s architecture: multiple convolutional layers
(fconv ), followed by a fully-connected layer + softmax (fclass)

R224×224 fconv−−→ R1024 fclass−−→ R1000

x 7→ x′ 7→ y
(input image) (bottleneck layer) (classes)

I We can think of fconv as a very elaborate feature
transformation: x′ is a 1024-dimensional feature
representing the image.

I We call x′ the bottleneck layer.

I x′ is highly adapted to the classification problem GoogLeNet
has been trained on: Its features are very helpful to recognize
cats, dogs, cars, etc.!

42



Transfer Learning with GoogLeNet

Training

I We want to recognize 200 new objects (say, chairs).
Of each, we have 100 training images.

I We apply the convolutional layers fconv to all images

I We cache the resulting bottleneck vectors x′

I We train a new (1-layer!) classification layer f ′class
on those bottlenecks

I During training, errors are not propagated back into the
convolutional layers. Only the last layer is trained.

Application

I Given a new image x, its classification result is f ′class(fconv (x))

I This means: We use GoogleNet and simply replace the final
layer with a ’chair-specific’ one!
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Transfer Learning with GoogLeNet: Results1

I transfer learning on 3D CG models of chairs (200 views each)

I test photos of chairs similar to a 3D model

1Nadja Kurz, “Ein CNN zur view-basierten 3D-Modell-Suche”, Bachelor’s Thesis,
HSRM, 2016.
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Image Classification Example: Path Following images from [8]
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Text Compression Example: Semantic Hashing images from [17]

I Neural networks for (text) information retrieval

I Multiple layers of Restricted Boltzmann Machines (RBMs),
trained incrementally

I Learning problem: Compress high-dimensional bag-of-words
vectors to 32 bits, and reconstruct the original data

I Retrieval quality with 32-bit vectors about as good as
(tf-idf) bag-of-words.
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Example: Term Embeddings image: [6]

“You shall know a word by the com-
pany it keeps”

(J.R.Firth (1957))

I Stage 1 (Unsupervised):
Context-based prediction of
words. Given its neighbors, predict
a word (or given a word, predict
its neighbors).

I Stage 1 (Supervised):
Classification of text subsequences

I part-of-speech tagging
(noun vs. verb)

I named entity recognition
(person vs. company)

I selantic role labeling
(subject vs. object)

I synonym prediction
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Example: Term Embeddings image: [6]

Byproduct: Term-level Feature Vectors

I Terms t are mapped to high-dimensional feature vectors p(t)
I relations between terms become shifts in vector space

p(uncle ′′)− p(′′man′′) + p(′′woman′′) ≈ p(′′aunt ′′)

I works for syntactic and semantic relations
I allows smarter machine learning on texts
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