
Machine Learning
– winter term 2016/17 –

Chapter 09:
Deep Learning

Prof. Adrian Ulges
Masters “Computer Science”

DCSM Department
University of Applied Sciences RheinMain

20. November 2016

1

Deep Learning Applications images from [14] [16] [1] [13] [18]

In this Chapter

I Why deep learning is hard

I Tricks to make it work

I Convolutional neural networks

I State-of-the-art in Neural Networks
2

Outline

1. Why Deep Learning is Hard

2. Tricks to make Deep Learning Work

3. Convolutional Neural Networks

4. Deep Learning: Sample Models

3

Deep Learning: Characterization

Deep Learners are models which ...

... consist of “many” layers of nonlinear units (=neurons)
(many = at least 3?)

... are in contrast to “shallow” learners
(e.g., logistic regression, SVMs → 1 layer)

... learn representations of data whose abstraction increases
through the layers

... use these representations instead of hand-crafted features

... often learn these representations in an unsupervised manner
on large-scale datasets

4

Backpropagation (Reprise)

training
target t

W,

b

LL-1...

...

L-2L-3

W,

b
W,

b

backward phase

Backprop Formulas

δL =
(

aL − t
)
� f ′(zL)

δl =
(

W l+1 · δl+1
)
� f ′(zl)

∆w l
ij = −λ · δlj · al−1

i

∆bl
j = −λ · δlj

5

Key Problem: Unstable Gradients

“As we move from the output layer to earlier layers the gradient
tends to either vanish (the vanishing gradient problem) or explode
(the exploding gradient problem). Since the gradient is the signal
we use to train, this causes problems.”

(Nielsen, “Neural Networks and Deep Learning”)

Dummy Network (1 neuron per layer, sigmoid activation f , see [15])

4321

w1 w2 w3 w4

b1 b2 b3 b4

6

Unstable Gradients: Example

7

Vanishing Gradients: Example image from [15]

I a neural network trained on MNIST data
(30 neurons per hidden layer, 4 hidden layers, fully connected)

I The delta-values in the different layers, δ1, δ2, ..., δL,
indicate how strong the weights change during learning.

I We measure this “speed” of learning in the different layers
by ||δ1||, ||δ2||, ..., ||δL||.

I Note that the scale is logarithmic
(Layer 1 learns 100× slower than Layer 4)

8

Outline

1. Why Deep Learning is Hard

2. Tricks to make Deep Learning Work

3. Convolutional Neural Networks

4. Deep Learning: Sample Models

9

Deep Learning: What to do?

Improving Optimization (= avoid unstable gradients)

I different loss function (→ cross-entropy)

I different activation function (→ RELU)

I variations to backpropagation (→ momentum, Chapter 08)

I advanced techniques

Improving Generalization (= avoid overfitting)

I regularization + dropout

I network topology (CNNs)

I more processing power (GPUs)
I larger training sets

I Pascal VOC Challenge (2005-2012): 11K training images
I ILSVRC (2012-...): 1,3 mio. training images

10

Trick 1: Cross-Entropy Cost

Example: a poorly initialized neuron (see [15])

w=3

b=3

input:

x=1
output:

a=0,99
target:

t=0,00

I Our old cost function (squared error): E = 1
2 (a− t)2 ...

I ... leads to weight updates of ∂E
∂w = (a− t) · f ′(z)

I ... and f ′(z) is very small!

I We plot the learning progress over the iterations: How fast
does the neuron move towards the desired output 0?

0 25 50 75 100 125 150 175
iteration

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
 a

learning progress

0 200 400 600 800
iteration

0.0

0.2

0.4

0.6

0.8

1.0
ou

tp
ut

 a
learning progress

11

Trick 1: Cross-Entropy Cost
I Idea: Our cost must compensate for small values of f ′

I Use the Cross Entropy as cost (see Chapter 02)

C (aL) = −
∑
k

tk · log(aLk) + (1− tk) · log(1− aLk)

= −log(1− a) // in our case

I C penalizes our ’far off’ neuron much stronger!

0.0 0.2 0.4 0.6 0.8 1.0
output a

0

1

2

3

4

5

co
st

 fu
nc

tio
n

squared error E
cross entropy C

12

Trick 1: Cross-Entropy Cost

With cross-entropy, our neuron learns much faster!

0 25 50 75 100 125 150 175
iteration

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
 a

learning progress
squared error E
cross entropy C

0 100 200 300 400
iteration

0.0

0.2

0.4

0.6

0.8

1.0

ou
tp

ut
 a

learning progress
squared error E
cross entropy C

13

Trick 2: Rectified Linear Units (RELUs)

sigmoid activation RELU activation

4 2 0 2 4
x

0.00

0.25

0.50

0.75

1.00

f(x
)

4 2 0 2 4
x

0

1

2

3

4

5

f(x
)

Backpropagation works with RELUs just like with sigmoids -
just with a different f ′ term.

Sigmoid

I learning slows down for small and large inputs

Rectified Linear Unit
I learning is fast for positive inputs

I the neuron stops learning entirely for negative inputs

I (much) more efficient computation
14

Trick 2: Rectified Linear Units (RELUs)

Practical Advice
I The input of RELU neurons should tend to be larger than zero
→ initialize with a slightly higher bias!

I Let a1, a2, ..., an be the outputs of a RELU layer. If we want
them to be scaled to [0, 1] (say, in classification), we simply
rescale the RELU unit’s output using a so-called softmax(

a1, a2, ..., an
)
7→
(ea1∑

i eai
,

ea2∑
i eai

, ...,
ean∑
i eai

)
Example

1, 3, 1, 7 7→ 2%, 11%, 2%, 85%

−3, 0, 0.5, −15 7→ 2%, 37%, 61%, 0%

Remarks
I RELU activations have been vital to image recognition [10, 11]

I “We do not yet have a solid theory of how activation
functions should be chosen.” [15]

15

Advanced Techniques image from [5]

More Complicated Ways to Facilitate Deep Learning

I pretraining: start training with a simple network, then add
incremental layers [5]

I linear (sub-)paths through the network
(prevent the gradient from dying off)

I skip connections bypassing several layers

I adding extra copies of the output to early layers [19]
(makes the lowest layers receive a large gradient)

16

Outline

1. Why Deep Learning is Hard

2. Tricks to make Deep Learning Work

3. Convolutional Neural Networks

4. Deep Learning: Sample Models

17

Convolution for Images

We view images as discrete 2D signals s : Z× Z→ {1, ...,M}.
Filters transform images s into other images s ′. We focus on a
particular kind of filter: FIR (finite-impulse-response) filters:

Definition (FIR Filter for Images)

Let s be a (2D) signal (i.e., an image), M ∈ N, and
w−M,−M ... w−M,0 ... w−M,M

...

w0,−M ... w0,0 ... w0,M

...

wM,−M ... wM,0 ... wM,M


be a filter mask. Then, an finite impulse response filter computes:

s ′(x , y) =
M∑

u=−M

M∑
v=−M

s(x − u, y − v) · wu,v

18

Convolution for Images
I We place the mask at every position of the image
I We compute the weighted sum of the pixel intensities,

weighted by the mask’s values

19

Convolution for Images: Example 1 image: Christoph Lampert

The mean filter blurs the input image
w−2,−2 w−2,−1 w−2,0 w−2,1 w−2,2

w−1,−2 w−1,−1 w−1,0 w−1,1 w−1,2

w0,−2 w0,−1 w0,0 w0,1 w0,2

w1,−2 w1,−1 w1,0 w1,1 w1,2

w2,−2 w2,−1 w2,0 w2,1 w2,2

 =
1

25
·


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1



Filter T

20

Convolution for Images: Example 2

What do these Filters do?1 0 −1
2 0 −2
1 0 −1

  1 2 1
0 0 0
−1 −2 −1


These are the Sobel filters: They are commonly used to compute

the partial derivatives ∂s(x ,y)
∂x , ∂s(x ,y)

∂y of an image (which indicate
the edges of an image)

Filter T

21

Traditional Use of Convolution/Filters image from [4]

Key Idea: Even when images from the same class are not globally
similar, they share certain local characteristics

Approach: Hand-engineer Filters to detect Local Features

I robust to changes of illumination, pose, background, ...

I state-of-the-art until 2011 (and still used frequently today)

I SIFT, SURF, HoG, Canny, ORB, ...

I more in Chapter 03

22

Step 1: Local Feature Detection

Example: The DoG (“difference-of-Gaussians”)
filter detects blobs (dark regions surrounded
by a bright background)

I There are other detectors for corners, edges, etc.

I We usually apply filters of multiple sizes (→ scale invariance)

23

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

Step 2: Local Feature Matching image from [7]

After detecting local features, we match them
to recognize objects

24

Filters in Neural Networks
mask input images feature maps

I By carefully designing the filter mask, we can scan the image
for certain features

I Here, I designed a mask to detect the T-junction in the “4”.
I The result is called a feature map

Filters in Neural Networks
I Layer 1: run feature detectors over the image

I Layer 2: classify based on which features have been detected

I This way, neural networks can learn their filters by
backpropagation!

I We call them convolutional neural networks (CNNs)

25

Convolutional Layers images from [15]

Convolutional Layers apply Filters

I the input neurons are the input image’s pixels

I the hidden neurons (1st layer) are the feature map’s pixels

I the weights are the entries of the (say, 5× 5) filter mask
I the activation of neuron (or pixel) (j , k) in the feature map is

ajk = f
(
b +

2∑
u=−2

2∑
v=−2

wuv · xj+u,k+v

)
I short for the whole image (with the convolution operator ∗):

a = f
(

b + (W ∗ x)
)

26

Convolutional Layers images from [15]

Discussion

I CNNs need far less weights: With a 28× 28 input image and
24× 24 output map, the number of weights is:

I fully connected layer: 28× 28× 24× 24 (+242) ≈ 450, 000
I convolutional layer: 5× 5 (+1) = 26

I This is called weight sharing, and it’s great:
less parameters → less overfitting!

I Convolutional neurons have a limited receptive field (e.g.,
5× 5) → instead of detecting global features, convolutional
neurons detect local features.

27

Convolutional Layers images from [15]

I Because we require far less weights,
we can spend them on multiple
feature maps!

I CNNs use hundreds of filters per layer.

I Some example of feature masks learned from MNIST data

28

CNNs: Layer Stacking

„person“

input image layer 1 layer 2 layer 3 layer 4 layer 5
(fully connected)

I A single convolutional layer is quite limited:
Its receptive fields are tiny and prone to noise.

I Idea: Feed feature maps to a subsequent layer, which
constructs more complex features (→ abstraction)

I Multiple layers: edges → pupils → eyes → faces → persons
I With increasing layers ...

I ... the level of abstraction increases
I ... the accuracy of localization decreases

29

CNNs: Layer Stacking

input image

Layer 1 Layer 2

I The second layer has not one input image, but multiple ones
(namely, the feature maps from the first layer)!

I A neuron n in the second layer should be allowed to
combine inputs from multiple feature maps of Layer 1

I Solution: n can access all feature maps within a local area,
i.e. n’s local receptive field has size 5× 5×20:

ap+1
jk = f

(
b +

2∑
u=−2

2∑
v=−2

20∑
f =1

wuvf · apj+u,k+v ,f

)
30

CNNs: Layer Stacking

Example

I Layer 1 takes a 28× 28 input image and filters it with 20
masks of size 5× 5, obtaining 20 feature maps.

I Note: with a 5× 5 convolution, the image reduces to 24× 24
(the filter mask must fit image).

I We add a second convolutional layer to the CNN

Layer dims(in) mask #filters dims(out)

1 28× 28 5× 5 20 24× 24× 20

2 24× 24× 20 5× 5×20 30 20× 20× 30

Remarks
I Each layer’s feature maps form a “3D matrix” (or tensor)

I This is why Google’s deep learning library is called tensorflow.

31

CNNs: Layer Stacking → Visualization images from [20]

I A CNN trained on 1000 object categories with 1,3 mio. images
I We visualize the features the CNN has learned, by ...

I ... feeding the network input images
I ... recording the strongest activation in a given layer
I ... projecting this activation back to pixel space using

deconvolution

I We start with Layers 1 and 2 ...

32

CNNs: Layer Stacking → Visualization images from [20]

I ... and continue with Layers 3 ...

33

CNNs: Layer Stacking → Visualization images from [20]

I ... to Layers 4 and 5.

34

CNNs: Pooling Layers image from [15]

I We introduce pooling layers
between the convolutional layers

I These scale down the feature
maps (it is enough to know roughly
where a feature occurs).

Variations of Pooling

I Max-Pooling: take the maximum activation of the feature
detector in the receptive field.

I L2-Pooling: take the L2 norm of the activations in the
receptive field

35

CNNs: Minimal Architecture image from [15]

Remarks
I This CNN can be trained using plain backpropagation

(see [9] for details)

I For convolutional layers, the error ∆wuvf is collected from
all pixels in the output mask.

I For pooling layers, the error is just forwarded to the exact
pixel where it came from.

36

Outline

1. Why Deep Learning is Hard

2. Tricks to make Deep Learning Work

3. Convolutional Neural Networks

4. Deep Learning: Sample Models

37

Example (Object Recognition): LeNet image from [12]

I 341K connections but only 90K parameters (weight sharing)

I applied to handwriting recognition
(Demo: http://yann.lecun.com)

I 1998 (when SVMs were the method of choice...)

38

Example (Object Recognition): AlexNet images from [11], [2]

I key trigger for deep
learning boom

I Layers: 5 × convolution,
3 FC layers, RELUs,
dropout

I GPU implementation,
network partitioned (did not fit 1 GPU)

I outstanding winner of ILSVRC’12 (top-5-error: 15.3%,
second-best: 26.2%)

39

Example (Object Recognition): GoogLeNet images from [19] [3]

I increased depth (22 layers) and width of network
I but: 12 × fewer parameters than AlexNet (1×1 convolutions)
I Codename: Inception (a network within a network)
I human-level object recognition (ILSVRC: 6.8% top-5-error)
I A. Karpathy: I sat down and went

through the [...] careful annotation
process myself. [...] I became very
good at identifying breeds of dogs.
[...] My own error in the end

turned out to be 5.1%.
40

Transfer Learning

“Transfer learning is the improvement of learning in a new task
through the transfer of knowledge from a related task that has
already been learned.”

(L. Torrey, J. Shavlik)

I Deep Learning allows us to train strong, complex models
on large-scale training sets

I Key question: Can I adapt existing models to new domains
(where little training data may be available)?

Examples

I I have trained a deep network for keyword detection on
Wikipedia. Can I apply that to my customer’s E-Mails?

I Can I reuse GoogLeNet (trained on cars, cats, dogs, etc.)
to identify other objects?

41

Transfer Learning with GoogLeNet

I Recall GoogLeNet’s architecture: multiple convolutional layers
(fconv), followed by a fully-connected layer + softmax (fclass)

R224×224 fconv−−→ R1024 fclass−−→ R1000

x 7→ x′ 7→ y
(input image) (bottleneck layer) (classes)

I We can think of fconv as a very elaborate feature
transformation: x′ is a 1024-dimensional feature
representing the image.

I We call x′ the bottleneck layer.

I x′ is highly adapted to the classification problem GoogLeNet
has been trained on: Its features are very helpful to recognize
cats, dogs, cars, etc.!

42

Transfer Learning with GoogLeNet

Training

I We want to recognize 200 new objects (say, chairs).
Of each, we have 100 training images.

I We apply the convolutional layers fconv to all images

I We cache the resulting bottleneck vectors x′

I We train a new (1-layer!) classification layer f ′class
on those bottlenecks

I During training, errors are not propagated back into the
convolutional layers. Only the last layer is trained.

Application

I Given a new image x, its classification result is f ′class(fconv (x))

I This means: We use GoogleNet and simply replace the final
layer with a ’chair-specific’ one!

43

Transfer Learning with GoogLeNet: Results1

I transfer learning on 3D CG models of chairs (200 views each)

I test photos of chairs similar to a 3D model

1Nadja Kurz, “Ein CNN zur view-basierten 3D-Modell-Suche”, Bachelor’s Thesis,
HSRM, 2016.

44

Image Classification Example: Path Following images from [8]

45

Text Compression Example: Semantic Hashing images from [17]

I Neural networks for (text) information retrieval

I Multiple layers of Restricted Boltzmann Machines (RBMs),
trained incrementally

I Learning problem: Compress high-dimensional bag-of-words
vectors to 32 bits, and reconstruct the original data

I Retrieval quality with 32-bit vectors about as good as
(tf-idf) bag-of-words.

46

Example: Term Embeddings image: [6]

“You shall know a word by the com-
pany it keeps”

(J.R.Firth (1957))

I Stage 1 (Unsupervised):
Context-based prediction of
words. Given its neighbors, predict
a word (or given a word, predict
its neighbors).

I Stage 1 (Supervised):
Classification of text subsequences

I part-of-speech tagging
(noun vs. verb)

I named entity recognition
(person vs. company)

I selantic role labeling
(subject vs. object)

I synonym prediction

47

Example: Term Embeddings image: [6]

Byproduct: Term-level Feature Vectors

I Terms t are mapped to high-dimensional feature vectors p(t)
I relations between terms become shifts in vector space

p(uncle ′′)− p(′′man′′) + p(′′woman′′) ≈ p(′′aunt ′′)

I works for syntactic and semantic relations
I allows smarter machine learning on texts

48

References I
[1] Google DeepDream robot: 10 weirdest images produced by AI ’inceptionism’ and users online (Photo:

Reuters).
http://www.straitstimes.com/asia/east-asia/

alphago-wins-4th-victory-over-lee-se-dol-in-final-go-match (retrieved: Nov 2016).

[2] Image Recognition (Tensorflow tutorial).
https://www.tensorflow.org/versions/r0.11/tutorials/image_recognition/index.html (retrieved:
Nov 2016).

[3] Mocha.jl: Deep Learning for Julia.
https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/ (retrieved: Nov
2016).

[4] picture shared by Christoph Lampert.
contact: http://pub.ist.ac.at/~chl/.

[5] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy Layer-Wise Training of Deep Networks.
In Advances in Neural Information Processing Systems 19, pages 153–160. 2007.

[6] R. Collobert and J. Weston.
A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning.
In Ann. Conf. on Neural Information Processing Systems (NIPS), 2008.

[7] M. Eberts.
Automatisierte Indexierung der Videoaufnahmen von Vorträgen mittels Bildmatching.
Bachelor’s Thesis, RheinMain University of Applied Sciences, 2014.

[8] A. G. et al.
A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots.
IEEE Robotics and Automation Letters, 1(2), July 2016.

49

http://www.straitstimes.com/asia/east-asia/alphago-wins-4th-victory-over-lee-se-dol-in-final-go-match
http://www.straitstimes.com/asia/east-asia/alphago-wins-4th-victory-over-lee-se-dol-in-final-go-match
https://www.tensorflow.org/versions/r0.11/tutorials/image_recognition/index.html
https://devblogs.nvidia.com/parallelforall/mocha-jl-deep-learning-julia/
http://pub.ist.ac.at/~chl/

References II
[9] A. Gibiansky.

Convolutional Neural Networks (blog post).
http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/ (retrieved:
Nov 2016).

[10] X. Glorot, A. Bordes, and Y. Bengio.
Deep Sparse Rectifier Neural Networks.
In Proc. AISTATS-11, volume 15, pages 315–323, 2011.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton.
ImageNet Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25, pages 1097–1105. 2012.

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-Based Learning Applied to Document Recognition.
In Proceedings of the IEEE, volume 86, pages 2278–2324, 1998.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean.
Distributed Representations of Words and Phrases and their Compositionality.
In Advances in Neural Information Processing Systems 26, pages 3111–3119. Curran Associates, Inc., 2013.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 02 2015.

[15] M. Nielsen.
Neural Networks and Deep Learning.
Determination Press, 2015.

50

http://andrew.gibiansky.com/blog/machine-learning/convolutional-neural-networks/

References III
[16] M.-A. Russon.

Google DeepDream robot: 10 weirdest images produced by AI ’inceptionism’ and users online.
http://www.ibtimes.co.uk/

google-deepdream-robot-10-weirdest-images-produced-by-ai-inceptionism-users-online-1509518

(retrieved: Nov 2016).

[17] R. Salakhutdinov and G. Hinton.
Semantic Hashing.
International Journal of Approximate Reasoning, 50, 2009.

[18] C. Szegedy.
Building a deeper understanding of images (Google Research Blog).
https://research.googleblog.com/2014/09/building-deeper-understanding-of-images.html

(retrieved: Nov 2016).

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going Deeper with Convolutions.
In Computer Vision and Pattern Recognition (CVPR), 2015.

[20] M. D. Zeiler and R. Fergus.
Visualizing and Understanding Convolutional Networks.
CoRR, abs/1311.2901, 2013.

51

http://www.ibtimes.co.uk/google-deepdream-robot-10-weirdest-images-produced-by-ai-inceptionism-users-online-1509518
http://www.ibtimes.co.uk/google-deepdream-robot-10-weirdest-images-produced-by-ai-inceptionism-users-online-1509518
https://research.googleblog.com/2014/09/building-deeper-understanding-of-images.html

	Why Deep Learning is Hard
	Tricks to make Deep Learning Work
	Convolutional Neural Networks
	Deep Learning: Sample Models

