Machine Learning
— winter term 2016/17 —

Chapter 10:

Instance-based Learning

Prof. Adrian Ulges
Masters “Computer Science”
DCSM Department
University of Applied Sciences RheinMain

ML Strategies so Far

Our ML Models so far...
» Learning based on recursive splits (decision trees)

» Learning based on hyperplanes (logistic regression)
» Learning based on stacked hyperplanes (neural networks)
» Learning based on projection to subdimensions (PCA)

» Learning based on finding clusters of close-by points
(K-Means/EM)

In this Chapter
» Learning based on comparing instances (=samples)
» Required: similarity/distance measure (Euclidean?)
1. k-Nearest Neighbor Classification
2. fast nearest neighbor search
3. Support Vector Machines

Outline

1. k-Nearest Neighbor (k-NN)

k-Nearest Neighbor

Y'old Classification Setting
» Training samples x1, ..., x, € R? with labels
Yi,..,¥Yn € {1, ey C}
» Goal: classify a sample x

Approach
» Compute each training sample x;'s (Euclidean)

distance to x, d(x;,x)
» Sort the training samples by (increasing) distance to x
Xr(1)s Xr(2)s +> Xrr(k)» Xr(k41)5 ++> Xe(n)
with
(closest training sample) (1) = arg min; d(x;,X)
(2nd closest training sample) 7(2) = arg mini#r(l) d(x;,x)

(3rd closest training sample) 7(3) = arg MiNjLr(1),i%m(2) d(xj,x)

k-Nearest Neighbor

Approach (cont'd)

» We call the k closest training samples the nearest neighbors
to x

Xa(1)s Xn(2)s -+ X (k) > Xa(k4+1) 5 -+ Xz(n)

» We estimate the class score (or posterior) by a simple voting
over the nearest neighbors

Zk:]. lczyﬂ_ j
P(clx) = == —=

(__ #f neighbors with class C)
~ # neighbors total

k-Nearest Neighbor: Do-it-Yourself ?
0
0 o 7'
e
0’ 1

k-Nearest Neighbor: Examples

1-NN-Klassifikation

5

1.0
0.9
0.8
0.7
0.6
05
0.4
¢ s 51-NN-Klassifikation

1 2 3 4 5

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

k-Nearest Neighbor: Discussion

k-NN Example: Image Annotation

» Given: a training set of annotated images and
a test image x (to be annotated)

» Approach: Find the k training images most similar to x
and transfer their labels

tralmng samples (= |mages))

test image

k-NN Example: Image Annotation

A sample Approach
(Torralba et al.)!

» Scale (color) images to
32 x 32 pixels

» Store pixel values in a
32 x 32 x 3 feature vector

» Calculate Euclidean distance
between vectors
(improvements by invariance
to flipping and small shifts)

» Observation: The bigger
the training set, the 'better’
neighbors+classification!

Torralba et al.: ,80 Mio. Tiny Images — A large-scale Dataset for Non-parametric
Object and Scene Recognition”, CVPR 2008.

10

Outline

2. Fast Nearest Neighbor Search: KD-Trees

11

KD-Trees: Approach *

» Tree-based indexing is a standard approach towards scalable
NN search, with applications in computer graphics,
geo-search, machine learning, ...

» Approach (space partitioning): Recursively subdivide
feature space (similar to binary search)

» KD-trees are index-based: The KD-tree is constructed
off-line, and used for fast search on-line

training samples
/ e’ \
— —

off-line /onv-line
test sample x

12

KD-Trees: Basics

For now, we assume ...
» ... feature vectors to be real-valued
> ... the target distance to be the Euclidean distance

» ... k=1 (only one nearest neighbor)

@7) x=4
. : Vs \=
{(x,y): x<4, y<5} . y } 3
® (1,3) @7 (72 (4
(1.3) P
(7.2)
{(xy): x>=4,y<3}

13

KD-Trees: Construction

1 function construct_kdtree(samples):

2 if #samples==1: // reached a leaf

3 return KDTree(samples)

4 (d*, t) := choose_split(samples)

5 samplesy := {x € samples | xq= < t}

6 samples; := {x € samples | xq= > t}

7 treeg := construct_kdtree(samples)

8 tree; := construct_kdtree(samples;)

9 return KDTree(d”, t, samples, treeg, tree;)

» Every node in the tree represents a bounding box
[miny, maxy] X ... X [ming, maxy]

> The root bounding box covers all training samples

> We recursively...

» ... pick a dimension d* € {1,...,d} and a threshold t € R
> ... and split the bounding box into two parts

[miny, maxi] x ...[ming, t[X ... X [ming, max4]

[min1, maxi] x ...[t, maxq] X ... X [ming, max4]

14

KD-Trees: Do-it-Yourself

» What are good strategies for choosing d* and t?

15

KD-Trees: Search

» Search works by recursing until we reach a leaf node
» We return the corresponding sample as the nearest neighbor
» Effort: O(log(n)) (if splitting by the median)

Challenge
» The found neighbor may not be the best one

test sample x —El

16

KD-Trees: Search (Backtracking)

Extension: Backtracking

» Observation: Any potentially better neighbor than the one
found would have to lie in a circle C(x)

» Backtracking: Recurse up the tree, and check each node
whose bounding box intersects with C(x)

> Whenever we find a better neighbor, remember it
and shrink C(x)

best result o ()
so far T L
() - o -
. 0" Q‘
circle C(x) — > S
; \

.- -

17

KD-Trees: Search (Backtracking Example)

index structure 1. start: leaf node C 2. backtrack to sibling

KD-Trees Search: Do-it-Yourself

» Do we always find the best neighbor by backtracking?
» What is the O-class when searching with backtracking?

?

19

KD-Trees: Search (Backtracking Example)

T =

good case bad case

20

KD-Trees: Approximate Search

Approximate NN Search

» Same approach as before: We backtrack the tree and search
regions intersecting with the circle C(x)

> Idea: reduce the circle by a factor € (for example, € =)
» This leads to a faster search (more nodes are pruned)

» Quality garantee (kd-tree result x’ vs. best neighbor x*):

1
[Ix = x'[] < = []x — x"]
€
A B
0) _
/0% N
AN
C .|*l)*\
°

21

Tree Structures for fast NN Search

Sphere Rectangle Tree k-d-B tree
Geometric near-neighbor access tree Excluded
middle vantage point forest mvp-tree Fixed-height fixed-queries
tree Vantage-point tree
R*-tree Burkhard-Keller tree BBD tree Voronoi tree Balanced
aspect ratio tree Metric tree vp*-tree M—tree
sstree R-tree Spatial approximation tree Multi-vantage

point tree Bisector tree Mb-tree

Generalized hyperplane tree

Hybrid tree Slim tree Spill Tree Fixed queries tree X-tree
k_d tree Balltree Qua dtree OCtI’ee

SR-tree Post-office tree

22

Outline

3. Fast Nearest Neighbor Search: Locality-sensitive Hashing

23

Locallity-sensitive Hashing (LSH) *

Locality-sensitive hashing (LSH) is a space partitioninig
approach, similar to KD-trees

Differences to KD-trees
» Partitioning is (usually) sequential, not recursive
» No backtracking (LSH search is approximate)

» Subdivisions are randomized

H(x) \
N 01 .,511
.0 °® //’ o=
\§_/ I
s , °
00 / 10

24

LSH: Formalization

» Given: training samples
X1,...,Xn € RY

» Given: a set (or family) of hash
functions, each of the form

h:RY = {0,..., N}
» We usually choose N =1
(i.e., hash functions = "“bits")
h:RY - {0,1}
» We randomly choose k hash

functions h1, ..., h, and map
each sample to a hash code

H(x) := (hl(x), hk(x))

°
h,(x)
2 1 o _ 1
\\.\ e / =
~ = °
0 0
L °
H(x)
N 01 .,\11
\\. [} //I =
S
*
/ 10

25

LSH: Indexing

» Training samples xi, ..., X, are stored in a hash table, with
their hash codes H(x1), ..., H(x,) as keys

> We repeat this process t times, obtaining t hash codes
Hi, ..., H; leading to t (randomized) tables

\
S 01 . 11 01/ o 11
Ne_ e . /o)—-;\
o |/ s’ Ne o*--
00 , 10 00\ 10
'/ ° 0\\ °
table, table,
0 oo 00 o
01 eoe 01 o
10 ¢ o 10 900
1 1 oo

26

LSH: Search

Given a test sample x, we ...
» ... compute all hash codes Hi(x), ..., H¢(x)
> ... lookup candidates in all t tables
> ... do a linear scan over all candidates from all tables
(and return the best candidate found)

Example
e ./T' -~ . ol . date found
~_=7° LN . ® o a4

table H, Table H 4 -
2 candidates
> (00Tl 00 o to check
01 ©0 @ 01 o

10 oo 10 o000

27

LSH: Discussion ?
Do-it-yourself c
» What happens when increasing the number of bits k7
» What happens when increasing the number of tables t?
Outlook: Spectral Hashing [4]

» Hash functions derived from PCA

> better “goodness-of-fit” of hash functions

28

LSH: A Sample Experiment

Application: Image Search

» 200,000 training images, 2,000
test images (each with 9 targets in
the training images)

> 600-dimensional color-based features
(color histograms, color correlograms)

> Use LSH to reduce the number of
distance calculation (e.g., from
200, 000 to 1,000)

LSH ? || -] 10 bits | 16 bits

time (s) 3.30 0.54 0.06

PREC®10 (%) || 46.6 45.1 341

29

Approximate NN Search in Practice mage womm

%ecwsion-Performance tradeoff - up and to the right is better

+ + annoy
o—o ball
| = BaliTree(nmslib)
[0 © bruteforce-blas
-0 bruteforceo(nmslib)
8.8 falconn
+— flann
% {0 © hnswinmslib)

* kd

<« kgraph

*u lshi

o-a nearpy

[0 © panns

< e mforest

o © sw-graph(nmslib)

Queries per second (s~!) - larger is better

101 L L L L L
0.0 0.2 0.4 0.6 0.8 10

10-NN precision - larger is better

Some Nearest Neighbor Libraries
» sklearn (not found to be very fast)
» FLANN (OpenCV, with Python links, but buggy)

» annoy (good solution, randomized trees, fast disk 1/0)

30

Outline

4. Support Vector Machines (SVMs)

31

Support Vector Machines (SVMS) image fom g

Support Vector Machines...

> ... are (still) very popular classifiers in machine learning

> ... have been introduced by Viadimir Vapnik (top right) in 1992
> ... often provide significantly better generalization than other classifiers
>

... follow an instance-based approach, similar to nearest neighbors

A Classifier Benchmark (2010) 2
» 103 datasets from the UCI machine learning repository
> 7 classifiers (parameters optimized using cross-validated grid search)

» For each classifier, count the datasets on which it is the best

2provided by Matthias Reif

32

Support Vector Machines (SVMs)?

SVMs are based on two fundamental concepts
> margin maximization

» kernel functions

Formalization
» Training samples xg, ..., x, € RY

» Training labels yi,...,y, € {-1,1}
(multi-class problems — one-vs-rest, one-vs-one)

» Geometric approach: Find a separating hyperplane

3based on Christoph Lampert’s excellent tutorial on Kernel methods [3]

33

SVMs: Margin Maximization

Which hyperplane is the best?

34

SVMs: Margin Maximization

To find the hyperplane (w, b) that maximizes the margin, we
formulate a constrained optimization problem

» We require all samples to be on the correct side of the plane,
plus a bit of margin

» We obtain the following constraints

w-x;+b>1 ify,= 1
w-x;+b<1 if yy =—1

> Or (clever):

y,--(w-x;—i—b)Zl foralli=1,.,n

35

SVMs: Margin Maximization

Formular for the Margin

» We choose the two samples x* (with label 1) and x~
(with label —1) “closest” to the separating hyperplane.

» We compute the “distance” of these samples orthogonal to
the hyperplane:

w-xt+b= 1
w-x +b=-1

w-(xt—x7)= 2
Wt) =
il &) = T

> ﬁ denotes the full “distance” from x* to x~.

» Ergo: the margin is ﬁ

36

SVMs: Support Vectors

» There are two kinds of training samples
1. “safé’ samples (which are far away from
the decision boundary, i.e. |w-x; + b| > |yi|)
2. support vectors (samples that lie on the margin,
ie.w-x;+b=y)
» The decision boundary is determined only by the support
vectors (hence, support vector machine)

support . P
vectors ® e o >V -
~ -~ -

37

SVMs: The Margin

> Note: Geometrically, the size
of the margin is: v = HTIH!

» This means: Maximizing the
margin is equivalent to
minimizing ||wl]|

support
vectors

38

SVMs: Maximum-margin Problem Formulation

The Maximum-margin Optimization Problem

Remarks

» This is a quadratic optimization problem with d + 1
variables. The objective function is differentiable and convex.

» We can find a global optimum!

39

How to achieve Non-Linearity? *

> Problem: Usually, datasets are not linearly separable
» Some strategies to achieve non-linearity

1. stacking multiple classifiers (neural networks)
2. slack variables (here)
3. data transformation (here)

40

Non-Linearity 1: Slack Variables

Motivation
Which of the two decision boundaries is better?

) Y/ °
% o/ °
o° a o*
[] ° / o [] .
/i) e _ -
/”/Z. ° ° ~
/A -
ﬂo e

41

Slack Variables: Formulation

» ldea: Allow some misclassifications
» Introduce so-called slack variables &1, ...,&£, > 0
(one slack variable per training sample)

Maximum-margin Formulation with slack variables
w* b* = argmin |[|w|]®>+ C- Zf.
w, 7517527 :én

subject to:
y,-~(w-x,-+b)21—£i foralli=1,.,n

Remarks
» Each slack variable &; allows a training sample x; to be
misclassified — at some cost.
» The free parameter C balances the cost of misclassifications
vs. margin size (later).

42

Slack Variables: lllustration

correctly classified
training sample:

£=0

misclassified

training sample:

£>0

43

Slack Variables *

The cost factor C realizes a trade-off between training error
and generalization
When choosing a high C (C — o0)...

> £1,..,60—0

» hard margin

> no training errors

When choosing a low C (C — 0)...
> larger, soft margin

» more incorrectly classified training samples

How to find a 'good’ C7
» C is usually optimized using cross-validation
» Optimization is still 'simple’, as the target function is still
convex (but there are n+ d + 1 dimensions instead of d + 1:
the slack variables need to be optimized too)

44

Non-Linearity 2: Data Transformation

How can we transform this training set
so it becomes linearly separable?

45

Data Transformation: Formalization *

» We define a data transformation ¢ : R — R™
» We train on ¢(x1), ..., ¢(x,) (rather than xi,...,xp)
» We apply classification on ¢(x) (rather than x)

Maximum-margin Problem with Slack Variables
and Data Transformation

w* b = argmin |wl||*> + C - Zﬁ,-
WeRm7b7£17£27"'7£n i
subject to:
y,-~<w-¢>(x,-)+b)21—§,- foralli=1,..,n

————
=:k(w,x;)

6

Data Transformations and the Kernel Trick

v

In practice, finding 'good’ data transformations can be tricky

v

Often, it is easier to compute a similarity between samples

v

We omit ¢ and use similarity functions k(x,y)
to compare samples x and y

v

This approach is called the kernel trick. We call
k:RY x RY — R% a kernel function.

*

47

“Kernelizing” our Learning Problem

The Representer Theorem

This theorem tells us that our maximum-margin solution w lies in
the subspace spanned by the training samples, and we can rewrite
it as:

w=> a;-¢(x;) withay, .. ,a,€R
i

"The SVM Problem’ (=Maximum-margin Problem with Slack
Variables and Kernel Functions)

48

SVMs: Algorithm

SVM Training
Given: training set xi, ..., X, with labels y1,...,y, € {-1,1}
1. Choose a kernel function k

2. Estimate ajq, ..., a, by optimizating the above SVM problem
(ai # 0 < x; is a support vector)

SVM Classification
Given: a test sample x

» compute k(x,x;) for all support vectors x;

» compute the classification score
(Za, - k(x, x;) + b

1 iff(x) >0

» Classify: ¢(x) := { —1 else

49

Outline

5. SVMs in Practice

50

Kernel Practice

Key Question: How do we choose kernel functions in practice?

» Some popular kernel functions

linear

k(x,y) =x-y =37 xiyi

polynomial

k(x,y) = (x-y)’ = (27:1 x,-y,-)p

radial basis function
(RBF)

k(x,y) = exp(_ W)

histogram intersection

k(x,y) = >0 min(x;, i)

x? kernel

Xi—Yi 2
(x) = exn{ - 3 £ B

e) (with 3 :=0)

» You can also define application-specific kernels
for your own type of data (e.g., strings)

» We can construct kernels from distance functions: if d(., .)
is a distance function, then e~ () can be used as a

kernel function

51

. _ 2
Kernel Practice imag fom 3 k(x,y) = exp(— %)

» Some kernels have parameters (example: 3 in the RBF kernel)
> In general, we want kernels to separate classes well
» Often a good choice (bottom right): 8:= 4 3"

n
ij=1

1% = x>

input data
X1y -ee5 Xn

.3 small

52

SVM Example (sklearn)

kernel=linear kernel=rbf, gamma=10.00
— lcamea frontier

learned frontier
000 positive samples ° 000 positive samples.
negative samples %0 negative samples

kernel=rbf, gamma=0.10

learned frontier
positive samples
negative samples

SVMs: Parameter optimization

SVMs usually contain free parameters, like C (weight of
slack variables) and [(kernel parameter)

Standard Approach: Grid Search
» test different choices for C and (3 on regular steps (a grid)

» for each (C, 3): measure classification accuracy on
a held-out validation set, or using cross-validation

B Error on Validation Set

good
parameter
choices

54

SVMs: Unbalanced Training Data

» Sometimes, training sets are highly imbalanced
(e.g., n1 = 10 positive samples, n_1 = 10000 negative ones)
» When training an SVM on such data, we may obtain
degenerate solutions

Strategy 1: Subsampling

» Subsample training samples class-wise such that
they become balanced

Strategy 2: Class-specific Cost

» Replace C with class-specific cost C;, C_1, such that
ny - C1 =n_1- C_1

» Formally:

aj, .., an b= argnli.n e+ G Z & +C Z &

ityi=1 iryi=

55

SVM Software

» We have not tackled how to solve the optimization
problems we formulated. SVM software will do it for you.

» Core software packages exist in C (libsvm, svmlight)

» Bindings to python, R, matlab, etc. exist
(check out scikit-learn)

» Those packages include common kernel functions, but also
allow you to define your own kernels!

56

References

(1]

[2]

3]

[4]

E. Bernhardsson.

Benchmark of Approximate Nearest Neighbor libraries.
https://erikbern.com/2015/07/04/benchmark-of-approximate-nearest-neighbor-libraries/
(retrieved: Nov 2016).

Columbia Engineering, The Fu Foundation.
Vladimir Vapnik — Unlocking a Complex World Mathematically.
http://engineering.columbia.edu/files/engineering/Excellentia.pdf (retrieved: Nov 2016).

C. Lampert and M. Blaschko.

Kernel Methods in Computer Vision.
http://www.robots.ox.ac.uk/~blaschko/CVPRTutorial2009/kernel_tutorial-Partl.pdf (retrieved: Nov
2016).

Y. Weiss, A. Torralba, and R. Fergus.
Spectral Hashing.
In Ann. Conf. on Neural Information Processing Systems (NIPS), pages 17531760, 2008.

57

https://erikbern.com/2015/07/04/benchmark-of-approximate-nearest-neighbor-libraries/
http://engineering.columbia.edu/files/engineering/Excellentia.pdf
http://www.robots.ox.ac.uk/~blaschko/CVPRTutorial2009/kernel_tutorial-Part1.pdf

	k-Nearest Neighbor (k-NN)
	Fast Nearest Neighbor Search: KD-Trees
	Fast Nearest Neighbor Search: Locality-sensitive Hashing
	Support Vector Machines (SVMs)
	SVMs in Practice

