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ML Strategies so Far

Our ML Models so far...
I Learning based on recursive splits (decision trees)

I Learning based on hyperplanes (logistic regression)

I Learning based on stacked hyperplanes (neural networks)

I Learning based on projection to subdimensions (PCA)

I Learning based on finding clusters of close-by points
(K-Means/EM)

In this Chapter

I Learning based on comparing instances (=samples)

I Required: similarity/distance measure (Euclidean?)

1. k-Nearest Neighbor Classification

2. fast nearest neighbor search

3. Support Vector Machines
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k-Nearest Neighbor

Y’old Classification Setting
I Training samples x1, ..., xn ∈ Rd with labels

y1, ..., yn ∈ {1, ...,C}
I Goal: classify a sample x

Approach
I Compute each training sample xi ’s (Euclidean)

distance to x, d(xi , x)

I Sort the training samples by (increasing) distance to x

xπ(1), xπ(2), ..., xπ(k), xπ(k+1), ..., xπ(n)

with
(closest training sample) π(1) = arg mini d(xi , x)

(2nd closest training sample) π(2) = arg mini 6=π(1) d(xi , x)

(3rd closest training sample) π(3) = arg mini 6=π(1),i 6=π(2) d(xi , x)

...
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k-Nearest Neighbor

Approach (cont’d)

I We call the k closest training samples the nearest neighbors
to x

xπ(1), xπ(2), ..., xπ(k), xπ(k+1), ..., xπ(n)

I We estimate the class score (or posterior) by a simple voting
over the nearest neighbors

P(c |x) =

∑k
j=1 1c=yπ(j)

k(
=

# neighbors with class c

# neighbors total

)
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k-Nearest Neighbor: Do-it-Yourself
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k-Nearest Neighbor: Examples
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k-Nearest Neighbor: Discussion
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k-NN Example: Image Annotation

I Given: a training set of annotated images and
a test image x (to be annotated)

I Approach: Find the k training images most similar to x
and transfer their labels

„forbidden city“„forbidden city“

training samples (=images)

test image
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k-NN Example: Image Annotation

A sample Approach
(Torralba et al.)1

I Scale (color) images to
32× 32 pixels

I Store pixel values in a
32× 32× 3 feature vector

I Calculate Euclidean distance
between vectors
(improvements by invariance
to flipping and small shifts)

I Observation: The bigger
the training set, the ’better’
neighbors+classification!

1Torralba et al.:
”
80 Mio. Tiny Images – A large-scale Dataset for Non-parametric

Object and Scene Recognition“, CVPR 2008.
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KD-Trees: Approach

I Tree-based indexing is a standard approach towards scalable
NN search, with applications in computer graphics,
geo-search, machine learning, ...

I Approach (space partitioning): Recursively subdivide
feature space (similar to binary search)

I KD-trees are index-based: The KD-tree is constructed
off-line, and used for fast search on-line

test sample x

retrieval

training samples 
x

1
,...,x

n

index 
structure

tree
construction

off-line on-line
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KD-Trees: Basics

For now, we assume ...

I ... feature vectors to be real-valued

I ... the target distance to be the Euclidean distance

I ... k = 1 (only one nearest neighbor)
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KD-Trees: Construction

1 function construct kdtree(samples) :
2 i f #samples==1: // reached a leaf

3 return KDTree(samples)
4 (d∗, t) := choose split(samples)
5 samples0 := {x ∈ samples | xd∗ < t}
6 samples1 := {x ∈ samples | xd∗ ≥ t}
7 tree0 := construct kdtree(samples0)
8 tree1 := construct kdtree(samples1)
9 return KDTree(d∗, t, samples, tree0, tree1)
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I Every node in the tree represents a bounding box

[min1,max1]× ...× [mind ,maxd ]

I The root bounding box covers all training samples
I We recursively...

I ... pick a dimension d∗ ∈ {1, ..., d} and a threshold t ∈ R
I ... and split the bounding box into two parts

[min1,max1]× ...[mind , t[× ...× [mind ,maxd ]

[min1,max1]× ...[t,maxd ]× ...× [mind ,maxd ]
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KD-Trees: Do-it-Yourself

1 4 5
6

7

4 5 3
2 3

I What are good strategies for choosing d∗ and t?
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KD-Trees: Search
I Search works by recursing until we reach a leaf node
I We return the corresponding sample as the nearest neighbor
I Effort: O(log(n)) (if splitting by the median)

Challenge

I The found neighbor may not be the best one

1 2

3

4
test sample x
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KD-Trees: Search (Backtracking)

Extension: Backtracking

I Observation: Any potentially better neighbor than the one
found would have to lie in a circle C(x)

I Backtracking: Recurse up the tree, and check each node
whose bounding box intersects with C (x)

I Whenever we find a better neighbor, remember it
and shrink C (x)

4 5

6

7
test sample x

circle C(x)

best result
(so far)
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KD-Trees: Search (Backtracking Example)

C

D E

A B

1. start: leaf node C
A B

C

D E

index structure 2. backtrack to sibling
A B

C

D E

3. recurse to D
A B

C

D E

4. recurse to E
A B

C

D E

5. skip (A,B)
A B

C

D E

→ return E
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KD-Trees Search: Do-it-Yourself

I Do we always find the best neighbor by backtracking?

I What is the O-class when searching with backtracking?
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KD-Trees: Search (Backtracking Example)

good case bad case
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KD-Trees: Approximate Search

Approximate NN Search

I Same approach as before: We backtrack the tree and search
regions intersecting with the circle C (x)

I Idea: reduce the circle by a factor ε (for example, ε = 1
3)

I This leads to a faster search (more nodes are pruned)

I Quality garantee (kd-tree result x′ vs. best neighbor x∗):

||x− x′|| ≤ 1

ε
· ||x− x∗||

A B

C

D E
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Tree Structures for fast NN Search
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Locallity-sensitive Hashing (LSH)

Locality-sensitive hashing (LSH) is a space partitioninig
approach, similar to KD-trees

Differences to KD-trees

I Partitioning is (usually) sequential, not recursive

I No backtracking (LSH search is approximate)

I Subdivisions are randomized

0 1

0 1

1 1

0 0

H(x)
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LSH: Formalization

I Given: training samples
x1, ..., xn ∈ Rd

I Given: a set (or family) of hash
functions, each of the form

h : Rd → {0, ...,N}

I We usually choose N = 1
(i.e., hash functions = “bits”)

h : Rd → {0, 1}

I We randomly choose k hash
functions h1, ..., hk , and map
each sample to a hash code

H(x) :=
(

h1(x), ..., hk(x)
)

0 1

0 1

h
1
(x)

1 1

0 0

h
2
(x)

0 1

0 1

1 1

0 0

H(x)
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LSH: Indexing

I Training samples x1, ..., xn are stored in a hash table, with
their hash codes H(x1), ...,H(xn) as keys

I We repeat this process t times, obtaining t hash codes
H1, ...,Ht leading to t (randomized) tables

0 1

0 1

1 1

0 0

table
1

00
01
10
11

0 1

0 1

1 1

0 0

table
2

00
01
10
11

...
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LSH: Search

Given a test sample x, we ...
I ... compute all hash codes H1(x), ...,Ht(x)
I ... lookup candidates in all t tables
I ... do a linear scan over all candidates from all tables

(and return the best candidate found)

Example

0 1

0 1

1 1

0 0

table H
1

00

0 1

0 1

1 1

0 0

Table H
2

00
01
10

01
10
11 11

4 candidates 
to check

best candi-
date found
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LSH: Discussion

Do-it-yourself

I What happens when increasing the number of bits k?

I What happens when increasing the number of tables t?

Outlook: Spectral Hashing [4]

I Hash functions derived from PCA

I better “goodness-of-fit” of hash functions

  

h
1

h
2

h
3

h
4
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LSH: A Sample Experiment

Application: Image Search

I 200, 000 training images, 2, 000
test images (each with 9 targets in
the training images)

I 600-dimensional color-based features
(color histograms, color correlograms)

I Use LSH to reduce the number of
distance calculation (e.g., from
200, 000 to 1, 000)

LSH ? - 10 bits 16 bits

time (s) 3.30 0.54 0.06
PREC@10 (%) 46.6 45.1 34.1

29
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Approximate NN Search in Practice image from [1]

Some Nearest Neighbor Libraries

I sklearn (not found to be very fast)

I FLANN (OpenCV, with Python links, but buggy)

I annoy (good solution, randomized trees, fast disk I/O)
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Support Vector Machines (SVMs) image from [2]

Support Vector Machines...

I ... are (still) very popular classifiers in machine learning

I ... have been introduced by Vladimir Vapnik (top right) in 1992

I ... often provide significantly better generalization than other classifiers

I ... follow an instance-based approach, similar to nearest neighbors

A Classifier Benchmark (2010) 2

I 103 datasets from the UCI machine learning repository

I 7 classifiers (parameters optimized using cross-validated grid search)

I For each classifier, count the datasets on which it is the best

2provided by Matthias Reif
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Support Vector Machines (SVMs)3

SVMs are based on two fundamental concepts

I margin maximization

I kernel functions

Formalization
I Training samples x1, ..., xn ∈ Rd

I Training labels y1, ..., yn ∈ {−1, 1}
(multi-class problems → one-vs-rest, one-vs-one)

I Geometric approach: Find a separating hyperplane

3based on Christoph Lampert’s excellent tutorial on Kernel methods [3]
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SVMs: Margin Maximization

Which hyperplane is the best?
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SVMs: Margin Maximization

To find the hyperplane (w, b) that maximizes the margin, we
formulate a constrained optimization problem

I We require all samples to be on the correct side of the plane,
plus a bit of margin

I We obtain the following constraints

w · xi + b ≥ 1 if yi = 1

w · xi + b ≤ 1 if yi = −1

I Or (clever):

yi ·
(

w · xi + b
)
≥ 1 for all i = 1, .., n

35



SVMs: Margin Maximization

Formular for the Margin

I We choose the two samples x+ (with label 1) and x−

(with label −1) “closest” to the separating hyperplane.

I We compute the “distance” of these samples orthogonal to
the hyperplane:

w · x+ + b = 1

w · x− + b = −1

w · (x+ − x−) = 2

w

||w||
· (x+ − x−) =

2

||w||

I 2
||w|| denotes the full “distance” from x+ to x−.

I Ergo: the margin is 1
||w|| .
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SVMs: Support Vectors
I There are two kinds of training samples

1. “safe” samples (which are far away from
the decision boundary, i.e. |w · xi + b| > |yi |)

2. support vectors (samples that lie on the margin,
i.e. w · xi + b = yi )

I The decision boundary is determined only by the support
vectors (hence, support vector machine)

γ
support 
vectors
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SVMs: The Margin

I Note: Geometrically, the size
of the margin is: γ = 1

||w|| !

I This means: Maximizing the
margin is equivalent to
minimizing ||w||

38
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SVMs: Maximum-margin Problem Formulation

The Maximum-margin Optimization Problem

Remarks

I This is a quadratic optimization problem with d + 1
variables. The objective function is differentiable and convex.

I We can find a global optimum!
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How to achieve Non-Linearity?

I Problem: Usually, datasets are not linearly separable
I Some strategies to achieve non-linearity

1. stacking multiple classifiers (neural networks)
2. slack variables (here)
3. data transformation (here)
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Non-Linearity 1: Slack Variables

Motivation
Which of the two decision boundaries is better?

41



Slack Variables: Formulation

I Idea: Allow some misclassifications
I Introduce so-called slack variables ξ1, ..., ξn ≥ 0

(one slack variable per training sample)

Maximum-margin Formulation with slack variables

w∗, b∗ = argmin
w,b,ξ1,ξ2,...,ξn

||w||2 + C ·
∑

i

ξi

subject to:

yi ·
(

w · xi + b
)
≥ 1 − ξi for all i = 1, .., n

Remarks
I Each slack variable ξi allows a training sample xi to be

misclassified – at some cost.

I The free parameter C balances the cost of misclassifications
vs. margin size (later).

42



Slack Variables: Illustration

misclassified 
training sample:


i
>0

correctly classified 
training sample:


i
=0
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Slack Variables

The cost factor C realizes a trade-off between training error
and generalization

When choosing a high C (C →∞)...
I ξ1, ..., ξn → 0

I hard margin

I no training errors

When choosing a low C (C → 0)...
I larger, soft margin

I more incorrectly classified training samples

How to find a ’good’ C?
I C is usually optimized using cross-validation

I Optimization is still ’simple’, as the target function is still
convex (but there are n + d + 1 dimensions instead of d + 1:
the slack variables need to be optimized too)
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Non-Linearity 2: Data Transformation

How can we transform this training set
so it becomes linearly separable?

45



Data Transformation: Formalization

I We define a data transformation φ : Rd → Rm

I We train on φ(x1), ..., φ(xn) (rather than x1, ..., xn)

I We apply classification on φ(x) (rather than x)

Maximum-margin Problem with Slack Variables
and Data Transformation

w∗, b∗ = argmin
w∈Rm,b,ξ1,ξ2,...,ξn

||w||2 + C ·
∑
i

ξi

subject to:

yi ·
(

w · φ(xi )︸ ︷︷ ︸
=:k(w,xi)

+ b
)
≥ 1 − ξi for all i = 1, .., n
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Data Transformations and the Kernel Trick

I In practice, finding ’good’ data transformations can be tricky

I Often, it is easier to compute a similarity between samples

I We omit φ and use similarity functions k(x, y)
to compare samples x and y

I This approach is called the kernel trick. We call
k : Rd × Rd → R0

+ a kernel function.
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“Kernelizing” our Learning Problem

The Representer Theorem

This theorem tells us that our maximum-margin solution w lies in
the subspace spanned by the training samples, and we can rewrite
it as:

w =
∑
i

αi · φ(xi ) with α1, ..., αn ∈ R

’The SVM Problem’ (=Maximum-margin Problem with Slack
Variables and Kernel Functions)
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SVMs: Algorithm

SVM Training

Given: training set x1, ..., xn with labels y1, ..., yn ∈ {−1, 1}
1. Choose a kernel function k

2. Estimate α1, ..., αn by optimizating the above SVM problem
(αi 6= 0⇔ xi is a support vector)

SVM Classification
Given: a test sample x

I compute k(x, xi ) for all support vectors xi
I compute the classification score

f (x) :=
(∑

i

αi · k(x, xi )
)

+ b

I Classify: ϕ(x) :=

{
1 if f (x) ≥ 0
−1 else
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Kernel Practice

Key Question: How do we choose kernel functions in practice?

I Some popular kernel functions

linear k(x, y) := x · y =
∑d

i=1 xiyi

polynomial k(x, y) := (x · y)p =
(∑d

i=1 xiyi
)p

radial basis function

(RBF) k(x, y) := exp
(
− ||x−y||2

β

)
histogram intersection k(x, y) :=

∑d
i=1 min(xi , yi )

χ2 kernel k(x, y) := exp
(
− 1

β

∑d
i=1

(xi−yi )
2

(xi+yi )
2

)
(with 0

0
:= 0)

I You can also define application-specific kernels
for your own type of data (e.g., strings)

I We can construct kernels from distance functions: if d(., .)
is a distance function, then e−d(.,.) can be used as a
kernel function
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Kernel Practice image from [3]

I Some kernels have parameters (example: β in the RBF kernel)

I In general, we want kernels to separate classes well

I Often a good choice (bottom right): β := 1
n2
∑n

i ,j=1 ||xi − xj ||2

52

k(x , y) = exp
(
− ||x−y ||

2

β

)

input data
x1, ..., xn

β large...

...β small



SVM Example (sklearn)
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SVMs: Parameter optimization

SVMs usually contain free parameters, like C (weight of
slack variables) and β (kernel parameter)

Standard Approach: Grid Search

I test different choices for C and β on regular steps (a grid)

I for each (C , β): measure classification accuracy on
a held-out validation set, or using cross-validation

β

C

  good 
  parameter 
  choices

Error on Validation Set
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SVMs: Unbalanced Training Data

I Sometimes, training sets are highly imbalanced
(e.g., n1 = 10 positive samples, n−1 = 10000 negative ones)

I When training an SVM on such data, we may obtain
degenerate solutions

Strategy 1: Subsampling

I Subsample training samples class-wise such that
they become balanced

Strategy 2: Class-specific Cost

I Replace C with class-specific cost C1, C−1, such that
n1 · C1 = n−1 · C−1

I Formally:

α∗1, ..., α
∗
n, b = arg min

...
... + C1 ·

∑
i :yi=1

ξi + C−1 ·
∑

i :yi=−1
ξi
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SVM Software

I We have not tackled how to solve the optimization
problems we formulated. SVM software will do it for you.

I Core software packages exist in C (libsvm, svmlight)

I Bindings to python, R, matlab, etc. exist
(check out scikit-learn)

I Those packages include common kernel functions, but also
allow you to define your own kernels!
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