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ML Strategies so Far

Our ML Models so far...
> Learning based on recursive splits (decision trees)

> Learning based on hyperplanes (logistic regression)
> Learning based on stacked hyperplanes (neural networks)
> Learning based on projection to subdimensions (PCA)

> Learning based on finding clusters of close-by points
(K-Means/EM)

In this Chapter
> Learning based on comparing instances (=samples)
> Required: similarity/distance measure (Euclidean?)
1. k-Nearest Neighbor Classification
2. fast nearest neighbor search

3. Support Vector Machines
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1. k-Nearest Neighbor (k-NN)

k-Nearest Neighbor

Y'old Classification Setting
> Training samples xi, ..., x, € RY with labels

y17 "'7yn E {]‘7 e C}
> Goal: classify a sample x

Approach
> Compute each training sample x;'s (Euclidean)
distance to x, d(x;,x)

> Sort the training samples by (increasing) distance to x

x7r(1)7 x7r(2)7 sy x7r(k)7 x7r(k—|—1)7 ey xﬂ'(n)
with
(closest training sample) 7T(1) = arg min,- d(x,-, X)
(2nd closest training sample) 7(2) = arg min,-;,éﬂ(l) d(x;, x)

(3rd closest training sample) 7(3) = arg mini?éﬂ.(l),l‘;éﬂ.(2) d(x;, x)




k-Nearest Neighbor

Approach (cont'd)

> We call the k closest training samples the nearest neighbors
to x

Xm(1)) Xm(2)s +++3 X (k)» Xm(k+1)1 -++> X7r(n)

> We estimate the class score (or posterior) by a simple voting
over the nearest neighbors

k
Z_]:]. lc—_—yﬂ_(j)
k
( 7 neighbors with class c>

# neighbors total

P(c|x) =

k-Nearest Neighbor: Do-it-Yourself




k-Nearest Neighbor: Examples

1-NN-Klassifikation

k-Nearest Neighbor: Discussion *
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k-NN Example: Image Annotation

> Given: a training set of annotated images and
a test image x (to be annotated)

> Approach: Find the k training images most similar to x
and transfer their labels

test image

"

k-NN Example: Image Annotation

A sample Approach
(Torralba et al.)?

> Scale (color) images to
32 x 32 pixels

> Store pixel values in a
32 x 32 x 3 feature vector

> Calculate Euclidean distance
between vectors
(improvements by invariance
to flipping and small shifts)

790,000

> Observation: The bigger
the training set, the 'better’
neighbors+classification!

79,000,000

Torralba et al.: ,,80 Mio. Tiny Images — A large-scale Dataset for Non-parametric
Object and Scene Recognition", CVPR 2008.
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Outline *

2. Fast Nearest Neighbor Search: KD-Trees
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KD-Trees: Approach *

> Tree-based indexing is a standard approach towards scalable
NN search, with applications in computer graphics,
geo-search, machine learning, ...

> Approach (space partitioning): Recursively subdivide
feature space (similar to binary search)

> KD-trees are index-based: The KD-tree is constructed
off-line, and used for fast search on-line

Saningisamplesis

Aline

il

/

off-line
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KD-Trees: Basics

For now, we assume ...
> ... feature vectors to be real-valued
> ... the target distance to be the Euclidean distance

> ... k =1 (only one nearest neighbor)

2.7) x=4

4) y=5 y=3

{fxy):x<4,y<5} ® /_\ AN
® 1,3) @7 (72 (54)

(13) ®

(7.2)

{Gay): x>=4,y<3}

=
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KD-Trees: Construction

1 function construct_kdtree(samples):
2 if #samples:: : // reached a leaf

3 return KDTree(samples)

4 (d*, t) := choose_split(samples)

5 samplesp := {x € samples | x4+ < t}

6 samples; := {x € samples | x4« > t}

7 treep := construct_kdtree(samplesy)

8 tree; := construct_kdtree(samples;)

9 return KDTree(d”, t, samples, treeg, tree; )

> Every node in the tree represents a bounding box
[mini, maxq] X ... X [ming, maxy]

> The root bounding box covers all training samples

> We recursively...

> ... pick a dimension d* € {1, ...,d} and a threshold t € R
> ... and split the bounding box into two parts

[miny, maxi] X ...[ming,t[ X ... X [ming, max4]

[miny, maxi] x ...[t, maxg] X ... X [ming, max4]
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KD-Trees: Do-it-Yourself

> What are good strategies for choosing d* and t?
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KD-Trees: Search *

> Search works by recursing until we reach a leaf node
> We return the corresponding sample as the nearest neighbor
> Effort: O(log(n)) (if splitting by the median)
Challenge
> The found neighbor may not be the best one

teSt sample x ' @
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KD-Trees: Search (Backtracking)

Extension: Backtracking

> Observation: Any potentially better neighbor than the one
found would have to lie in a circle C(x)

> Backtracking: Recurse up the tree, and check each node
whose bounding box intersects with C(x)

> Whenever we find a better neighbor, remember it
and shrink C(x)

mmmer NI T e

best result o
(CRED) B ey
&

circle C(x)
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KD-Trees: Search (Backtracking Example)

index structure . start: leaf
A

n_ogle G 2v.mbacktrack t

o sibling
A e

ey

— return E
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KD-Trees Search: Do-it-Yourself ?
:

> Do we always find the best neighbor by backtracking?
> What is the O-class when searching with backtracking?
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KD-Trees: Search (Backtracking Example) *
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KD-Trees: Approximate Search

Approximate NN Search

> Same approach as before: We backtrack the tree and search
regions intersecting with the circle C(x)

> Idea: reduce the circle by a factor ¢ (for example, ¢ = %)
> This leads to a faster search (more nodes are pruned)

> Quality garantee (kd-tree result x’ vs. best neighbor x*):

1
[ = x| < = - |lx = x|
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Tree Structures for fast NN Search

Sphere Rectangle Tree k-d-B tree
Geometric near-neighbor access tree Excluded
middle vantage point forest mvp-tree F ixed-height fixed-queries
tree Vantage-point tree
R*-tree Burkhard-Keller tree BBD tree Voronoi tree  Balanced
aspect ratio tree Metric tree vp®-tree |V|—tree
sstree R-tree Spatial approximation tree Multi-vantage
point tree Bisector tree  Mb-tree

Generalized hyperplane tree

Hybrid tree Slim tree Spill Tree Fixed queries tree X-tree

k-d tree Baree Quadtree Octree

SR-tree Post-office tree
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3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
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Locallity-sensitive Hashing (LSH) *

Locality-sensitive hashing (LSH) is a space partitioninig
approach, similar to KD-trees

Differences to KD-trees

> Partitioning is (usually) sequential, not recursive
> No backtracking (LSH search is approximate)

» Subdivisions are randomized

H(x) \
N 01 .|§11
00 , 10

./ 0
/
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LSH: Formalization h,(x) \
0 o 1
i .. ® o !
> Given: training samples = ,’ 0
X1, ...,Xp, € RY o, 1
0
> Given: a set (or family) of hash ¢
functions, each of the form
. d
h:R% — {0,..., N} hz\(x) 1 e 1
> We usually choose N =1 ~ _:,’ & )
(i.e., hash functions = “bits") I 0 0
o
h:RY - {0,1} °
> We randomly choose k hash
functions hq, ..., hx, and map H\(x) 01 .‘,511
each sample to a hash code ANCE .//7' il
- = o
®
H(x) := (hl(x),..., hk(x)> e g
./ o
/
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LSH: Indexing

> Training samples x1, ..., X, are stored in a hash table, with
their hash codes H(xy), ..., H(xn) as keys

> We repeat this process t times, obtaining t hash codes
Hy, ..., H; leading to t (randomized) tables

1
N 01 o 11 01/ o 11
\eo ® / - o\
\-; ] ® 7 \-‘\ °o_ -
e ® -~
00 , 10 00\ 10
'/ ® 0\\ °
table, table,
00 s e 00 o
01 oo e 01 o
10 ¢ o 10 o000
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LSH: Search »*

Given a test sample x, we ...
> ... compute all hash codes Hi(x), ..., H(x)
> ... lookup candidates in all t tables
> ... do a linear scan over all candidates from all tables
(and return the best candidate found)

Example

best candi-
date found
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LSH: Discussion
?

Do-it-yourself

> What happens when increasing the number of bits k?

> What happens when increasing the number of tables ¢?

Outlook: Spectral Hashing [4]

» Hash functions derived from PCA

> better “goodness-of-fit” of hash functions
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LSH: A Sample Experiment

Application: Image Search

> 200,000 training images, 2,000
test images (each with 9 targets in
the training images)

> 600-dimensional color-based features
(color histograms, color correlograms)

> Use LSH to reduce the number of

distance calculation (e.g., from
200,000 to 1,000)

LSH ? | - | 10 bits | 16 bits

time (s) 3.30 0.54 0.06
PRECQIO (%) || 46.6 | 451 | 341
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Approximate NN Search in Practice imsg som

fagcision-Performance tradeoff - up and to the right is better
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10-NN precision - larger is better

Some Nearest Neighbor Libraries
> sklearn (not found to be very fast)

> FLANN (OpenCV, with Python links, but buggy)

> annoy (good solution, randomized trees, fast disk 1/ 0)
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4. Support Vector Machines (SVMs)

31

Support Vector Machines (SVMS) image from 12

Support Vector Machines...

> ... are (still) very popular classifiers in machine learning

... have been introduced by Vladimir Vapnik (top right) in 1992

>
> ... often provide significantly better generalization than other classifiers
>

... follow an instance-based approach, similar to nearest neighbors

A Classifier Benchmark (2010) 2
> 103 datasets from the UCI machine learning repository
> 7 classifiers (parameters optimized using cross-validated grid search )

> For each classifier, count the datasets on which it is the best

?provided by Matthias Reif
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Support Vector Machines (SVMs)?

SVMs are based on two fundamental concepts
> margin maximization

» kernel functions

Formalization
> Training samples xi, ..., x, € R?

> Training labels y1, ..., y, € {—1,1}
(multi-class problems — one-vs-rest, one-vs-one)

> Geometric approach: Find a separating hyperplane

*based on Christoph Lampert's excellent tutorial on Kernel methods [3]

SVMs: Margin Maximization

Which hyperplane is the best?

x+b=0
WXA+5 3
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SVMs: Margin Maximization *

To find the hyperplane (w, b) that maximizes the margin, we
formulate a constrained optimization problem

> We require all samples to be on the correct side of the plane
plus a bit of margin

> We obtain the following constraints

w-X;+b>1 ify,= 1
w-x;i+b<fl-g ify=-1

> Or (clever):

}/i'(W-X;+b>21 foralli=1,..,n
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SVMs: Margin Maximization *

Formular for the Margin

> We choose the two samples x* (with label 1) and x~
(with label —1) “closest” to the separating hyperplane.

> We compute the “distance” of these samples orthogonal to
the hyperplane:

w-xT+b= 1

wex b=l w 7 iwil=4
w-(xT—x7)= 2 ‘
Wt ey 2
w0 ) = g

> ||T2|| denotes the full “distance” from x* to x—.

> Ergo: the margin is m
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SVMs: Support Vectors *

> There are two kinds of training samples
1. "safe" samples (which are far away from
the decision boundary, i.e. |w - x; + b| > |y;|)
2. support vectors (samples that lie on the margin,
le. w-x;+ b=y
> The decision boundary is determined only by the support
vectors (hence, support vector machine)

support o
@
vectors ® "o o > P
—
&~ s
& o
-~ e
O
@
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SVMs: The Margin *
support & _
> Note: Geometrically, the size YEglom .'.° L
of the margin is: v = ”—‘},l—'! N/z <.
§ ) . . /.// // = (]
> This means: Maximizing the ﬁ/ s
margin is equivalent to . B

minimizing ||wl]|
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SVMs: Maximum-margin Problem Formulation *

The Maximum-margin Optimization Problem

W*gk — Ol im0
I we dz,EelK //W//

Suﬁajawé‘ +o
%i'(y\"x?*g>>/4 '\72’1:4/'“/M

Remarks

> This is a quadratic optimization problem with d + 1
variables. The objective function is differentiable and convex.

> We can find a global optimum!
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How to achieve Non-Linearity? *

> Problem: Usually, datasets are not linearly separable
> Some strategies to achieve non-linearity

1. stacking multiple classifiers (neural networks)
2. slack variables (here)
3. data transformation (here)

40




Non-Linearity 1: Slack Variables

Motivation
Which of the two decision boundaries is better?

..O < ... // &
o o/ 0 L
° Z oL S
" @ //7 ® . ,// // //.
7/ ® - // T e
//’o ® S ®
/3 o e
e ®
@o ®e
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Slack Variables: Formulation

> ldea: Allow some misclassifications
> Introduce so-called slack variables &1, ..., &, > 0
(one slack variable per training sample)

Maximum-margin Formulation with slack variables

w*, b* = argmin [|w|]*+ C- Zgi
W7b7€17€2,“';€n g

subject to:

)/i'<W'X,'—|—b)21—§i forall i=1,.,n

Remarks
> Each slack variable &; allows a training sample x; to be

misclassified — at some cost.
> The free parameter C balances the cost of misclassifications

vs. margin size (later).

42




Slack Variables: Illustration

correctly classified
training sample:
£=0

misclassified
training sample:
£>0
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Slack Variables

The cost factor C realizes a trade-off between training error
and generalization
When choosing a high C (C — o0)...

> fl; ---,gn — 0

> hard margin

> no training errors

When choosing a low C (C — 0)...
> larger, soft margin

> more incorrectly classified training samples

How to find a 'good’ C?
> C is usually optimized using cross-validation

> Optimization is still 'simple’, as the target function is still
convex (but there are n+ d + 1 dimensions instead of d + 1:

the slack variables need to be optimized too)




Non-Linearity 2: Data Transformation Cy) o

L
d ol®
How can we transform this training set - @
so it becomes linearly separable? e

A ° "

Al r roor " ®
r ~
SO 4)0(
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Data Transformation: Formalization *
> We define a data transformation ¢ : RY — R™
> We train on ¢(x1), ..., ¢(xn) (rather than xi, ..., x,)
> We apply classification on ¢(x) (rather than x)
Maximum-margin Problem with Slack Variables
and Data Transformation
w*, b* = argmin ||w|]?+ C- Zg,
WERm7b,§19€2:-“a‘Sn i
subject to:
y,--(w-qb(x,-)+b>21—§,- foralli=1,.,n
N—— _

=:k(w,X;)
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Data Transformations and the Kernel Trick

> In practice, finding 'good’ data transformations can be tricky
> Often, it is easier to compute a similarity between samples

> We omit ¢ and use similarity functions k(x,y)

to compare samples x and y
> This approach is called th@. We call
k:RYx R? — RY a kernel function.

x=
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“Kernelizing” our Learning Problem

The Representer Theorem
This theorem tells us that our maximum-margin solution w lies in
the subspace spanned by the tralmng samples, and we can rewrite
it as:

BUR} o)) with as, .00 € R

'The SVM Problem’ (:‘M'akimum—margin Problem with Slack
‘Variables and Kernel Functions) »
) w *=w-w

—

XTI N =
Tyt Z& ¢(x)d)(>§f) +cc%'§.

A
k( X%z |

Subectk +o 51). ( -. 08(}5()})45()3) %) > f 1z
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SVMs: Algorithm *

SVM Training
Given: training set xi, ...,x, with labels yi, ..., y, € {-1,1}
1. Choose a kernel function k

2. Estimate oy, ..., ap by optimizating the above SVM problem
(oi # 0 & x; is a support vector)

SVM Classification
Given: a test sample x

> compute k(x,x;) for all support vectors x;

> compute the classification score

f(x) := <Za,~ - k(x, x,-)) +b

1 iff(x)>0

> Classify: ¢(x) := { —1 else

49

QOutline *

5. SVMs in Practice
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Kernel Practice *

Key Question: How do we choose kernel functions in practice?

> Some popular kernel functions

linear k(x,y) :=x-y =37 xy;

polynomial k(x,y) = (x-y)P = (Z;Ll x,-y,-)p

radial basis function

(RBF) k(x,y) := exp( — ”x;ﬂy”i)

histogram intersection | k(x,y) := Y7, mln(x,,y,)

x? kernel k(x,y) := exp( Z, ) 4 g’l;}:’)z) (with 3 :=0)

> You can also define application-specific kernels
for your own type of data (e.g., strings)

> We can construct kernels from distance functions: if d(.,.)
is a distance function, then e=9() can be used as a
kernel function

51

] 12
Kernel Practice image fom k(x,y) = eXP( — Ll [3y” ) *

> Some kernels have parameters (example: 3 in the RBF kernel)
> |n general, we want kernels to separate classes well
> Often a good choice (bottom right): § := % >orim |Ixi = x| [2

.
Ly
o foge

input data
Xl, ...)Xn
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SVM Example (sklearn)

kernel=linear

kernel=rbf,

————
= learned frontier
positive samples
negative samples

gamma=10.00

10

= learned frontier
090 positive samples
e%e negative samples

kernel=rbf, gamma=0.10
= learned frontier
000 positive samples
e%e negative samples

= learned frontier
000 positive samples
%o negative samples
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SVMs: Parameter optimization

SVMs usually contain free parameters, like C (weight of
slack variables) and § (kernel parameter)

Standard Approach: Grid Search
> test different choices for C and 8 on regular steps (a grid)

> for each (C, 3): measure classification accuracy on
a held-out validation set, or using cross-validation

B A Error on Validation Set

2

good
parameter
choices
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SVMs: Unbalanced Training Data *

> Sometimes, training sets are highly imbalanced
(e.g., n1 = 10 positive samples, n_; = 10000 negative ones)
> When training an SVM on such data, we may obtain
degenerate solutions

Strategy 1: Subsampling

> Subsample training samples class-wise such that
they become balanced

Strategy 2: Class-specific Cost

> Replace C with class-specific cost C;, C_1, such that
n-C=n_1-C4

> Formally:
aj,...,af, b=argmin ... Z & + Ca Z §i
= iyi=
55
SVM Software *

> We have not tackled how to solve the optimization
problems we formulated. SVM software will do it for you.

> Core software packages exist in C (libsvm, svmlight)

> Bindings to python, R, matlab, etc. exist
(check out scikit-learn)

> Those packages include common kernel functions, but also
allow you to define your own kernels!
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