

Machine Learning

winter term 2016/17 -

Chapter 10: Instance-based Learning

Prof. Adrian Ulges
Masters "Computer Science"
DCSM Department
University of Applied Sciences RheinMain

ML Strategies so Far

Our ML Models so far...

- ▶ Learning based on recursive splits (decision trees)
- ► Learning based on hyperplanes (logistic regression)
- ▶ Learning based on stacked hyperplanes (neural networks)
- ▶ Learning based on projection to subdimensions (PCA)
- ► Learning based on finding clusters of close-by points (K-Means/EM)

In this Chapter

- ► Learning based on **comparing instances** (=samples)
- Required: similarity/distance measure (Euclidean?)
- 1. k-Nearest Neighbor Classification
- 2. fast nearest neighbor search
- 3. Support Vector Machines

Outline

- 1. k-Nearest Neighbor (k-NN)
- 2. Fast Nearest Neighbor Search: KD-Trees
- 3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
- 4. Support Vector Machines (SVMs)
- 5. SVMs in Practice

k-Nearest Neighbor

Y'old Classification Setting

- ▶ Training samples $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$ with labels $y_1, ..., y_n \in \{1, ..., C\}$
- ► Goal: classify a sample x

Approach

- ► Compute each training sample x_i 's (Euclidean) distance to x, $d(x_i, x)$
- Sort the training samples by (increasing) distance to x

$$\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(k)}, \mathbf{x}_{\pi(k+1)}, ..., \mathbf{x}_{\pi(n)}$$

with

(closest training sample)
$$\pi(1) = \arg\min_i d(\mathbf{x}_i, \mathbf{x})$$

(2nd closest training sample)
$$\pi(2) = \arg\min_{i \neq \pi(1)} d(\mathbf{x}_i, \mathbf{x})$$

(3rd closest training sample)
$$\pi(3) = \arg\min_{i \neq \pi(1), i \neq \pi(2)} d(\mathbf{x}_i, \mathbf{x})$$

. . .

k-Nearest Neighbor

Approach (cont'd)

ightharpoonup We call the k closest training samples the **nearest neighbors** to x

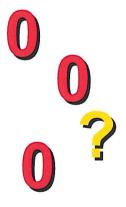
$$\mathbf{x}_{\pi(1)}, \mathbf{x}_{\pi(2)}, ..., \mathbf{x}_{\pi(k)}, \mathbf{x}_{\pi(k+1)}, ..., \mathbf{x}_{\pi(n)}$$

▶ We estimate the class score (or *posterior*) by a simple voting over the nearest neighbors

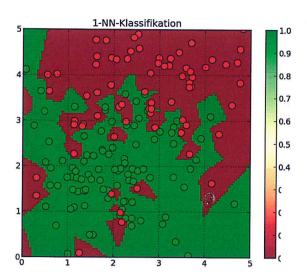
$$P(c|\mathbf{x}) = \frac{\sum_{j=1}^{k} \mathbf{1}_{c=y_{\pi(j)}}}{k}$$

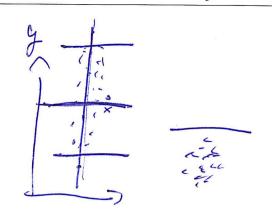
$$\left(= \frac{\text{\# neighbors with class c}}{\text{\# neighbors total}} \right)$$

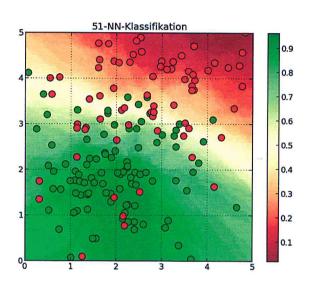
k-Nearest Neighbor: Do-it-Yourself



k-Nearest Neighbor: Examples







k-Nearest Neighbor: Discussion

+ no training (plazy learning")
- classification: O(n) ~> bnear scan

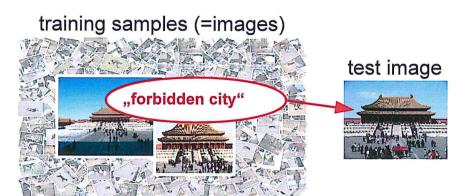
+ transparency + conceptually simple

+/- non-parametric

- Often, not the best moded

k-NN Example: Image Annotation

- ► **Given**: a training set of annotated images and a test image x (to be annotated)
- ▶ **Approach**: Find the *k* training images most similar to **x** and transfer their labels



9

k-NN Example: Image Annotation

A sample Approach $(Torralba et al.)^1$

- ► **Scale** (color) images to 32 × 32 pixels
- ► Store **pixel values** in a 32 × 32 × 3 feature vector
- Calculate Euclidean distance between vectors (improvements by invariance to flipping and small shifts)
- ▶ **Observation**: The bigger the training set, the 'better' neighbors+classification!

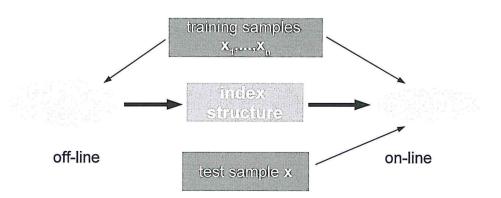
¹Torralba et al.: "80 Mio. Tiny Images – A large-scale Dataset for Non-parametric Object and Scene Recognition", CVPR 2008.

Outline

- 1. k-Nearest Neighbor (k-NN)
- 2. Fast Nearest Neighbor Search: KD-Trees
- 3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
- 4. Support Vector Machines (SVMs)
- 5. SVMs in Practice

KD-Trees: Approach

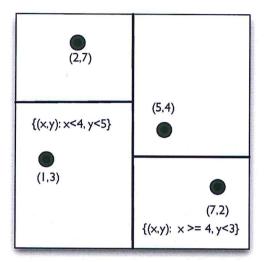
- ► Tree-based indexing is a standard approach towards scalable NN search, with applications in computer graphics, geo-search, machine learning, ...
- ► Approach (space partitioning): Recursively subdivide feature space (similar to *binary search*)
- ► KD-trees are **index-based**: The KD-tree is constructed off-line, and used for fast search on-line

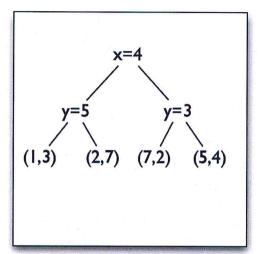


KD-Trees: Basics

For now, we assume ...

- ... feature vectors to be real-valued
- ▶ ... the target distance to be the Euclidean distance
- ightharpoonup ... k = 1 (only one nearest neighbor)





13

KD-Trees: Construction


```
function construct_kdtree(samples):
1
           if #samples==1:
 2
                                        // reached a leaf
               return KDTree(samples)
3
            (d^*, t) := \text{choose\_split(samples)}
            samples_0 := \{x \in samples \mid x_{d^*} < t\}
5
           samples_1 := \{x \in samples \mid x_{d^*} \ge t\}
6
            tree_0 := construct\_kdtree(samples_0)
7
            tree_1 := construct\_kdtree(samples_1)
8
            return KDTree(d^*, t, samples, tree<sub>0</sub>, tree<sub>1</sub>)
9
10
```

Every node in the tree represents a bounding box

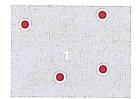
$$[min_1, max_1] \times ... \times [min_d, max_d]$$

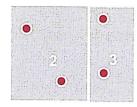
- ▶ The root bounding box covers all training samples
- We recursively...
 - ... pick a dimension $d^* \in \{1,...,d\}$ and a threshold $t \in \mathbb{R}$
 - ... and split the bounding box into two parts

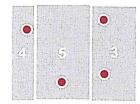
$$[min_1, max_1] \times ...[min_d, \mathbf{t}[\times ... \times [min_d, max_d]]$$

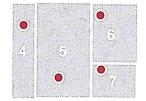
 $[min_1, max_1] \times ...[\mathbf{t}, max_d] \times ... \times [min_d, max_d]$

KD-Trees: Do-it-Yourself









▶ What are good strategies for choosing d^* and t?

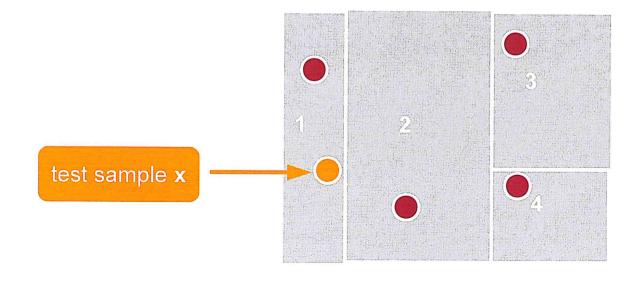
15

KD-Trees: Search

- ► Search works by recursing until we reach a **leaf node**
- ▶ We return the corresponding sample as the nearest neighbor
- ▶ Effort: O(log(n)) (if splitting by the median)

Challenge

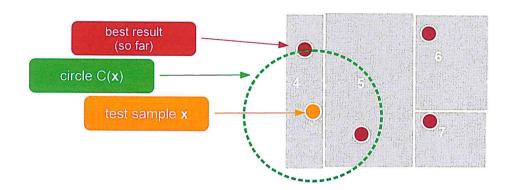
▶ The found neighbor may not be the best one



KD-Trees: Search (Backtracking)

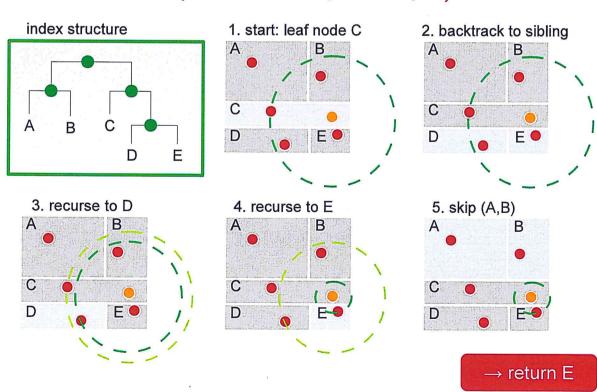
Extension: Backtracking

- ▶ **Observation**: Any potentially better neighbor than the one found would have to lie in a **circle C(x)**
- **Backtracking**: Recurse up the tree, and check each node whose bounding box intersects with C(x)
- ▶ Whenever we find a better neighbor, remember it and shrink $C(\mathbf{x})$



KD-Trees: Search (Backtracking Example)

17

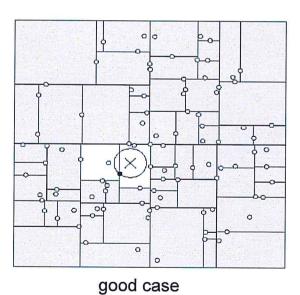


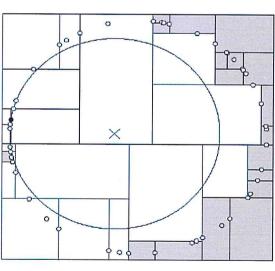
KD-Trees Search: Do-it-Yourself

- ▶ Do we always find the **best neighbor** by backtracking?
- ▶ What is the **O-class** when searching with backtracking?

10

KD-Trees: Search (Backtracking Example)





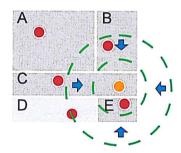
bad case

KD-Trees: Approximate Search

Approximate NN Search

- **Same approach as before**: We backtrack the tree and search regions intersecting with the circle C(x)
- ▶ Idea: **reduce the circle** by a factor ϵ (for example, $\epsilon = \frac{1}{3}$)
- ▶ This leads to a faster search (more nodes are pruned)
- **Quality garantee** (kd-tree result x' vs. best neighbor x^*):

$$||\mathbf{x} - \mathbf{x}'|| \le \frac{1}{\epsilon} \cdot ||\mathbf{x} - \mathbf{x}^*||$$



21

Tree Structures for fast NN Search

Sphere Rectangle Tree

k-d-B tree

Geometric near-neighbor access tree Excluded middle vantage point forest mvp-tree Fixed-height fixed-queries tree Vantage-point tree

R*-tree Burkhard-Keller tree BBD tree

Voronoi tree Balanced

vp^s-tree M-tree

SS-tree R-tree Spatial approximation tree Multi-vantage

point tree Bisector tree mb-tree

Metric tree

Generalized hyperplane tree

Hybrid tree Slim tree

aspect ratio tree

Spill Tree Fixed queries tree

X-tree

k-d tree

Balltree Quadtree Octree

SR-tree

Post-office tree

Outline

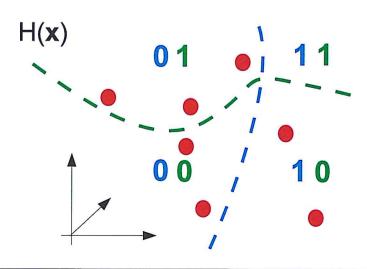
- 1. k-Nearest Neighbor (k-NN)
- 2. Fast Nearest Neighbor Search: KD-Trees
- 3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
- 4. Support Vector Machines (SVMs)
- 5. SVMs in Practice

Locallity-sensitive Hashing (LSH)

Locality-sensitive hashing (LSH) is a **space partitioninig** approach, similar to KD-trees

Differences to KD-trees

- ▶ Partitioning is (usually) **sequential**, not recursive
- ► No backtracking (LSH search is **approximate**)
- Subdivisions are randomized



LSH: Formalization

- ► Given: training samples $\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^d$
- ▶ **Given**: a set (or *family*) of hash functions, each of the form

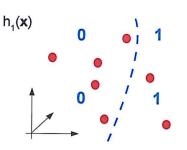
$$h: \mathbb{R}^d \to \{0, ..., N\}$$

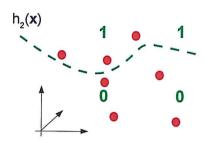
• We usually choose N=1(i.e., hash functions = "bits")

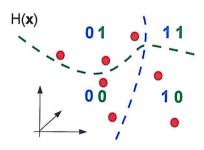
$$h: \mathbb{R}^d \to \{0,1\}$$

ightharpoonup We randomly choose k hash functions $h_1, ..., h_k$, and map each sample to a hash code

$$H(\mathbf{x}) := (h_1(\mathbf{x}), ..., h_k(\mathbf{x}))$$

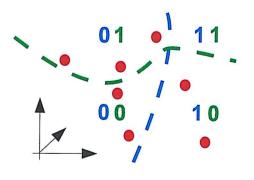


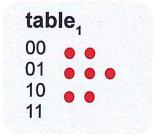


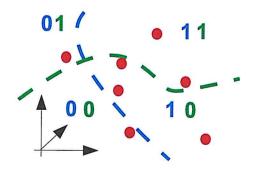


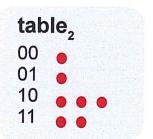
LSH: Indexing

- ightharpoonup Training samples $x_1, ..., x_n$ are stored in a hash table, with their hash codes $H(x_1), ..., H(x_n)$ as keys
- ▶ We repeat this process t times, obtaining t hash codes $H_1, ..., H_t$ leading to t (randomized) tables







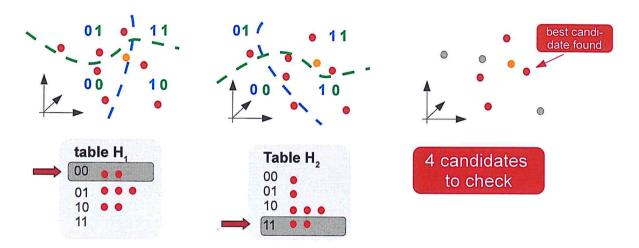


LSH: Search

Given a test sample x, we ...

- ... compute all hash codes $H_1(\mathbf{x}), ..., H_t(\mathbf{x})$
- ▶ ... lookup **candidates** in all t tables
- ... do a linear scan over all candidates from all tables (and return the best candidate found)

Example



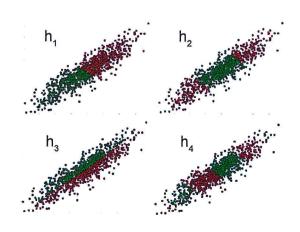
LSH: Discussion

Do-it-yourself

- ▶ What happens when increasing the number of bits k?
- ▶ What happens when increasing the number of tables *t*?

Outlook: Spectral Hashing [4]

- ► Hash functions derived from PCA
- better "goodness-of-fit" of hash functions



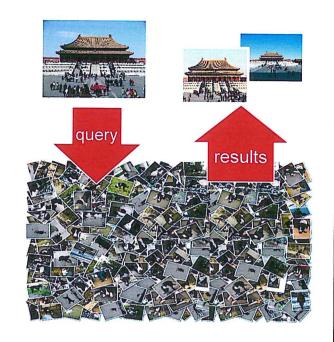
LSH: A Sample Experiment

*

Application: Image Search

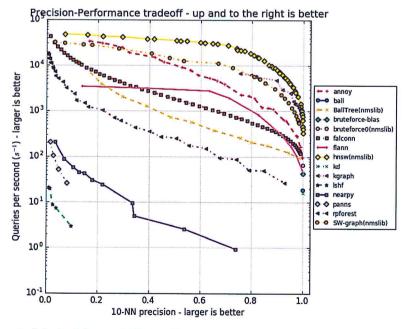
- ► 200,000 training images, 2,000 test images (each with 9 targets in the training images)
- 600-dimensional color-based features (color histograms, color correlograms)
- ▶ Use LSH to reduce the number of distance calculation (e.g., from 200,000 to 1,000)

LSH ?	_	10 bits	16 bits
time (s)	3.30	0.54	0.06
PREC@10 (%)	46.6	45.1	34.1



20

Approximate NN Search in Practice image from [1]



Some Nearest Neighbor Libraries

- sklearn (not found to be very fast)
- ► FLANN (OpenCV, with Python links, but buggy)
- ▶ annoy (good solution, randomized trees, fast disk I/O)

Outline

- 1. k-Nearest Neighbor (k-NN)
- 2. Fast Nearest Neighbor Search: KD-Trees
- 3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
- 4. Support Vector Machines (SVMs)
- 5. SVMs in Practice

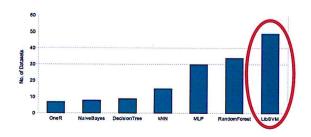
Support Vector Machines (SVMs) image from [2]

Support Vector Machines...

- ► ... are (still) very popular classifiers in machine learning
- ▶ ... have been introduced by Vladimir Vapnik (top right) in 1992
- ... often provide significantly better generalization than other classifiers
- ... follow an instance-based approach, similar to nearest neighbors

A Classifier Benchmark (2010) ²

- ▶ 103 datasets from the UCI machine learning repository
- ▶ 7 classifiers (parameters optimized using cross-validated grid search)
- For each classifier, count the datasets on which it is the best



²provided by Matthias Reif

2000

Support Vector Machines (SVMs)³

SVMs are based on two fundamental concepts

- **▶** margin maximization
- kernel functions

Formalization

- ▶ Training samples $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^d$
- ► Training labels $y_1, ..., y_n \in \{-1, 1\}$ (multi-class problems \rightarrow one-vs-rest, one-vs-one)
- ► Geometric approach: Find a separating hyperplane

Which hyperplane is the best?

Wexts=0

Wexts=1

Wexts=1

Wexts=1

Wexts=1

Wexts=1

Support vectors

³based on Christoph Lampert's excellent tutorial on Kernel methods [3]

SVMs: Margin Maximization

To find the hyperplane (\mathbf{w}, b) that maximizes the margin, we formulate a **constrained optimization problem**

- ▶ We require all samples to be on the correct side of the plane, plus a bit of *margin*
- ▶ We obtain the following constraints

$$\mathbf{w} \cdot \mathbf{x}_i + b \ge 1$$
 if $y_i = 1$
 $\mathbf{w} \cdot \mathbf{x}_i + b \le 1$ if $y_i = -1$

► Or (clever):

$$y_i \cdot (\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$
 for all $i = 1, ..., n$

35

SVMs: Margin Maximization

Formular for the Margin

- We choose the two samples \mathbf{x}^+ (with label 1) and \mathbf{x}^- (with label -1) "closest" to the separating hyperplane.
- We compute the "distance" of these samples orthogonal to the hyperplane:

$$\mathbf{w} \cdot \mathbf{x}^{+} + b = 1$$

$$\mathbf{w} \cdot \mathbf{x}^{-} + b = -1$$

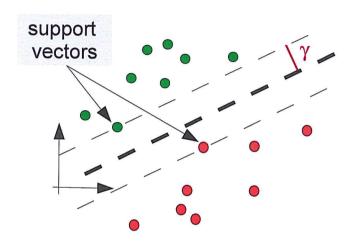
$$\mathbf{w} \cdot (\mathbf{x}^{+} - \mathbf{x}^{-}) = 2$$

$$\frac{\mathbf{w}}{||\mathbf{w}||} \cdot (\mathbf{x}^{+} - \mathbf{x}^{-}) = \frac{2}{||\mathbf{w}||}$$

- $ightharpoonup \frac{2}{||\mathbf{w}||}$ denotes the full "distance" from \mathbf{x}^+ to \mathbf{x}^- .
- Ergo: the margin is $\frac{1}{||\mathbf{w}||}$.

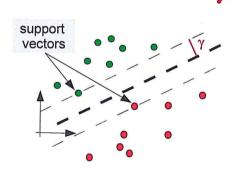
SVMs: Support Vectors

- ► There are **two kinds** of training samples
 - 1. "safe" samples (which are far away from the decision boundary, i.e. $|\mathbf{w} \cdot \mathbf{x}_i + b| > |y_i|$)
 - 2. **support vectors** (samples that lie on the margin, i.e. $\mathbf{w} \cdot \mathbf{x}_i + b = y_i$)
- ► The **decision boundary** is determined only by the support vectors (hence, **support vector** machine)



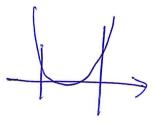
SVMs: The Margin

- Note: Geometrically, the size of the margin is: $\gamma = \frac{1}{||\mathbf{w}||}!$
- ► This means: Maximizing the margin is equivalent to minimizing ||w||



SVMs: Maximum-margin Problem Formulation

The Maximum-margin Optimization Problem

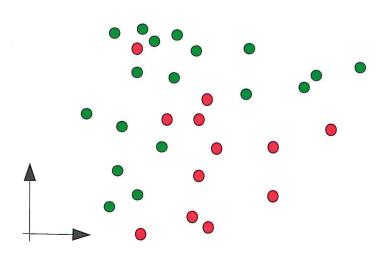


Remarks

- lacktriangle This is a **quadratic optimization problem** with d+1variables. The objective function is differentiable and convex.
- ▶ We can find a **global optimum**!

How to achieve Non-Linearity?

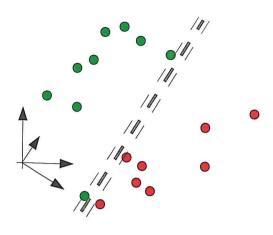
- Problem: Usually, datasets are not linearly separable
- Some strategies to achieve non-linearity
 - 1. stacking multiple classifiers (neural networks)
 - 2. slack variables (here)
 - 3. data transformation (here)

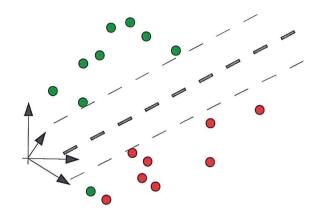


Non-Linearity 1: Slack Variables

Motivation

Which of the two decision boundaries is better?





11

Slack Variables: Formulation

- ▶ Idea: Allow some misclassifications
- Introduce so-called **slack variables** $\xi_1, ..., \xi_n \ge 0$ (one slack variable per training sample)

Maximum-margin Formulation with slack variables

$$\mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w}, b, \xi_1, \xi_2, \dots, \xi_n} ||\mathbf{w}||^2 + \mathbf{C} \cdot \sum_{\mathbf{i}} \xi_{\mathbf{i}}$$

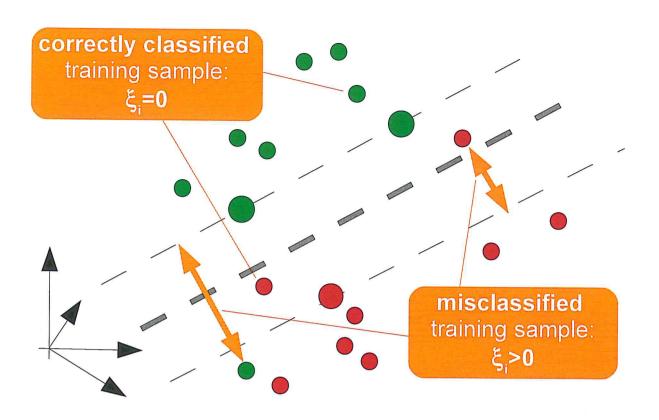
subject to:

$$y_i \cdot \left(\mathbf{w} \cdot \mathbf{x}_i + b\right) \ge 1 - \xi_i$$
 for all $i = 1, ..., n$

Remarks

- ▶ Each slack variable ξ_i allows a training sample \mathbf{x}_i to be misclassified at some cost.
- ▶ The free parameter *C* balances the cost of misclassifications vs. margin size (*later*).

Slack Variables: Illustration



...

Slack Variables

The cost factor C realizes a **trade-off** between training error and generalization

When choosing a high C $(C \to \infty)$...

- ▶ $\xi_1, ..., \xi_n \to 0$
- hard margin
- no training errors

When choosing a low C ($C \rightarrow 0$)...

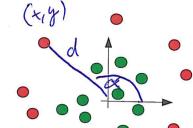
- ▶ larger, soft margin
- more incorrectly classified training samples

How to find a 'good' C?

- C is usually optimized using cross-validation
- ▶ Optimization is still 'simple', as the target function is still convex (but there are n + d + 1 dimensions instead of d + 1: the slack variables need to be optimized too)

Non-Linearity 2: Data Transformation

How can we transform this training set so it becomes linearly separable?



 $\frac{1}{9} \frac{1}{9} \frac{1$

45

Data Transformation: Formalization

- We define a data transformation $\phi: \mathbb{R}^d \to \mathbb{R}^m$
- We train on $\phi(\mathbf{x}_1),...,\phi(\mathbf{x}_n)$ (rather than $\mathbf{x}_1,...,\mathbf{x}_n$)
- ▶ We apply classification on $\phi(\mathbf{x})$ (rather than \mathbf{x})

Maximum-margin Problem with Slack Variables and Data Transformation

$$\mathbf{w}^*, b^* = \operatorname*{argmin}_{\mathbf{w} \in \mathbb{R}^{\mathbf{m}}, b, \xi_1, \xi_2, \dots, \xi_n} ||\mathbf{w}||^2 + C \cdot \sum_{i} \xi_i$$

subject to:

$$y_i \cdot \left(\underbrace{\mathbf{w} \cdot \phi(\mathbf{x}_i)}_{=:\mathbf{k}(\mathbf{w},\mathbf{x}_i)} + b\right) \ge 1 - \xi_i$$
 for all $i = 1,..,n$

Data Transformations and the Kernel Trick

- ▶ In practice, finding 'good' data transformations can be **tricky**
- ▶ Often, it is easier to compute a similarity between samples
- We omit ϕ and use **similarity functions** k(x, y) to compare samples x and y
- This approach is called the **kernel trick**. We call $k : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^0_+$ a **kernel function**.

47

"Kernelizing" our Learning Problem

The Representer Theorem

This theorem tells us that our maximum-margin solution \mathbf{w} lies in the subspace spanned by the training samples, and we can rewrite it as:

$$\mathbf{w} = \sum_{i} \widehat{\alpha_{i}} \phi(\mathbf{x}_{i})$$
 with $\alpha_{1},...,\alpha_{n} \in \mathbb{R}$

'The SVM Problem' (=Maximum-margin Problem with Slack

Variables and Kernel Functions) $\|w\|^2 = w \cdot w$ Organia $\sum_{\alpha_i = \alpha_j} \alpha_i \cdot \phi(x_i) \cdot \phi(x_i)$

Subject to

 $y_{i} \cdot (\sum_{j} \alpha_{j} \phi(x_{j}) \cdot \beta(x_{i}) + b) \geq 1 - \xi_{i} + \xi_{i}$

SVMs: Algorithm

SVM Training

Given: training set $\mathbf{x}_1,...,\mathbf{x}_n$ with labels $y_1,...,y_n \in \{-1,1\}$

- 1. Choose a kernel function k
- 2. Estimate $\alpha_1, ..., \alpha_n$ by optimizating the above SVM problem $(\alpha_i \neq 0 \Leftrightarrow \mathbf{x}_i \text{ is a support vector})$

SVM Classification

Given: a test sample x

- ightharpoonup compute $k(\mathbf{x}, \mathbf{x}_i)$ for all support vectors \mathbf{x}_i
- compute the classification score

$$f(\mathbf{x}) := \Big(\sum_{i} \alpha_{i} \cdot k(\mathbf{x}, \mathbf{x}_{i})\Big) + b$$

▶ Classify: $\varphi(\mathbf{x}) := \left\{ \begin{array}{cc} 1 & \text{if } f(\mathbf{x}) \geq 0 \\ -1 & \text{else} \end{array} \right.$

40

Outline

- 1. k-Nearest Neighbor (k-NN)
- 2. Fast Nearest Neighbor Search: KD-Trees
- 3. Fast Nearest Neighbor Search: Locality-sensitive Hashing
- 4. Support Vector Machines (SVMs)
- 5. SVMs in Practice

Kernel Practice

Key Question: How do we choose kernel functions in practice?

► Some popular kernel functions

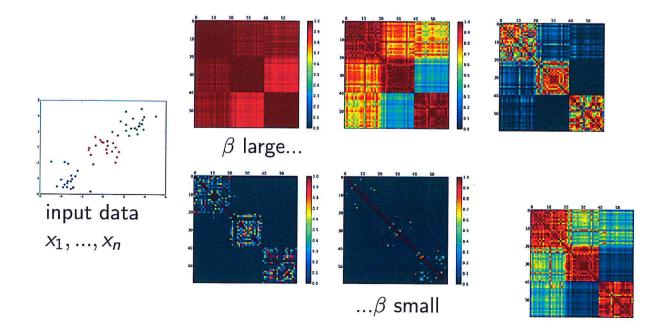
linear	$k(\mathbf{x}, \mathbf{y}) := \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{d} x_i y_i$
polynomial	$k(\mathbf{x}, \mathbf{y}) := (\mathbf{x} \cdot \mathbf{y})^p = \left(\sum_{i=1}^d x_i y_i\right)^p$
radial basis function	
(RBF)	$k(\mathbf{x}, \mathbf{y}) := exp\left(-\frac{ \mathbf{x} - \mathbf{y} ^2}{\beta}\right)$
histogram intersection	$k(\mathbf{x}, \mathbf{y}) := \sum_{i=1}^{d} min(x_i, y_i)$
χ^2 kernel	$k(\mathbf{x},\mathbf{y}) := exp\Big(-rac{1}{eta}\sum_{i=1}^drac{(x_i-y_i)^2}{(x_i+y_i)^2}\Big) ext{ (with } rac{0}{0}:=0)$

- ► You can also define **application-specific kernels** for your own type of data (e.g., strings)
- We can construct kernels from **distance functions**: if d(.,.) is a distance function, then $e^{-d(.,.)}$ can be used as a kernel function

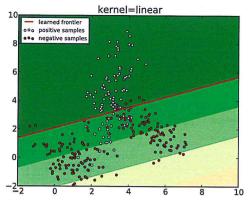
Kernel Practice image from [3]

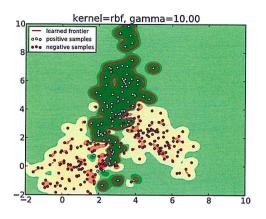
$$k(x,y) = exp\left(-\frac{||x-y||^2}{\beta}\right)$$

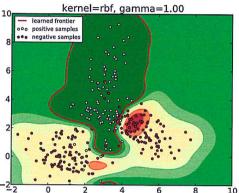
- ▶ Some kernels have parameters (example: β in the RBF kernel)
- ▶ In general, we want kernels to separate classes well
- Often a good choice (bottom right): $\beta := \frac{1}{n^2} \sum_{i,j=1}^n ||x_i x_j||^2$

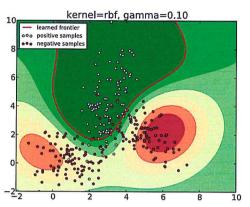


SVM Example (sklearn)









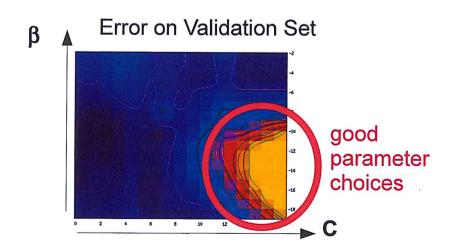
53

SVMs: Parameter optimization

SVMs usually contain **free parameters**, like C (weight of slack variables) and β (kernel parameter)

Standard Approach: Grid Search

- ▶ test different choices for C and β on regular steps (a grid)
- for each (C, β) : measure classification accuracy on a held-out validation set, or using cross-validation



SVMs: Unbalanced Training Data

- Sometimes, training sets are highly **imbalanced** (e.g., $n_1 = 10$ positive samples, $n_{-1} = 10000$ negative ones)
- When training an SVM on such data, we may obtain degenerate solutions

Strategy 1: Subsampling

▶ **Subsample** training samples **class-wise** such that they become balanced

Strategy 2: Class-specific Cost

- ▶ Replace C with **class-specific cost** C_1 , C_{-1} , such that $n_1 \cdot C_1 = n_{-1} \cdot C_{-1}$
- ► Formally:

$$\alpha_1^*, ..., \alpha_n^*, b = \arg\min_{...} ... + C_1 \cdot \sum_{i:y_i=1} \xi_i + C_{-1} \cdot \sum_{i:y_i=-1} \xi_i$$

--

SVM Software

- We have not tackled how to solve the optimization problems we formulated. SVM software will do it for you.
- Core software packages exist in C (libsvm, svmlight)
- ▶ Bindings to python, R, matlab, etc. exist (check out scikit-learn)
- ► Those packages include common **kernel functions**, but also allow you to define your own kernels!

References

[1] E. Bernhardsson.

Benchmark of Approximate Nearest Neighbor libraries. https://erikbern.com/2015/07/04/benchmark-of-approximate-nearest-neighbor-libraries/(retrieved: Nov 2016).

[2] Columbia Engineering, The Fu Foundation. Vladimir Vapnik - Unlocking a Complex World Mathematically. http://engineering.columbia.edu/files/engineering/Excellentia.pdf (retrieved: Nov 2016).

[3] C. Lampert and M. Blaschko. Kernel Methods in Computer Vision. http://www.robots.ox.ac.uk/~blaschko/CVPRTutorial2009/kernel_tutorial-Part1.pdf (retrieved: Nov 2016).

Y. Weiss, A. Torralba, and R. Fergus.
 Spectral Hashing.
 In Ann. Conf. on Neural Information Processing Systems (NIPS), pages 1753–1760, 2008.

57