

Machine Learning – winter term 2016/17 –

Chapter 11: Naive Bayes and Graphical Models

> Prof. Adrian Ulges Masters "Computer Science" DCSM Department RheinMain University of Applied Sciences

1. The No-free-lunch Theorem

2. Naive Bayes

3. Graphical Models

The No-free-Lunch Theorem image from [1]

- We have seen different classifiers now
- They all have their benefits and drawbacks (SVMs are preferred for small training sets, decision trees when few features can lead to an accurate decision, ...)
- Key Question: Is there a classifier that is best when averaging over many/all learning problems?

The No-free-Lunch Theorem

"If one is interested in off-training-set error, then there are no a priori distinctions between learning algorithms. All algorithms are equivalent, on average."

(www.no-free-lunch.org)

"For any two algorithms A and B, there are 'as many' targets (or priors over targets) for which A has lower expected OTS (off-training-set) error than B as vice versa."

(Wolpert 1997)

Remarks

- This means: If a classifier performs well on a certain set of problems, then it necessarily performs worse on the set of other problems.
- A *target* is a learning problem.
- The theorem does not take into account that some targets are more likely than others.

No Free Lunch: Illustration

1				1			
	1	0			1	0	

No Free Lunch

1. The No-free-lunch Theorem

2. Naive Bayes

3. Graphical Models

Machine Learning and Bayes' Rule

- Our goal: Compute the posterior $P(c|\mathbf{x})$.
- Observation: We can 'turn around' the posterior using Bayes' rule

"This is the "most important equation" in machine learning."

(S. Marsland)

Discriminative vs. Generative Models

⊁

In general, there are two general kinds of classifiers

- 1. **Discriminative** methods: use a direct model for $P(c|\mathbf{x})$ (or, alternatively, the decision boundary)
- 2. Generative methods: compute P(c) and $P(\mathbf{x}|c)$ and plug them into Bayes' rule

Generative Methods

- P(c) is easy to compute: We estimate each class's frequency.
 - 'two of three e-mails are spam' $ightarrow P(ext{spam}) = 0.1$
 - \blacktriangleright 'men and woman are equally frequent' \rightarrow P(0) = P(1) = 0.5
- $P(\mathbf{x}|c)$ is a bit more **tricky**
 - for discrete features: $P(\mathbf{x}|c)$ is a probability table
 - for continuous features: $P(\mathbf{x}|c)$ is a probability density

Generative Methods: Do-it-Yourself

We build a classifier for cars, with **classes** *cheap*, *medium-priced* and *costly*. Our **features** are *color* and *PSs*.

- Turn the values in the below tables into probabilities. Where are the priors, where the CCDs?
- Classify a red car with few PSs.

class 'cheap' (2000 cars)							
PSs / color	red	blue	silver				
lots	200	200 40					
few	800	300	500				
class 'medium' (1000 cars)							
PSs / color	red	blue	silver				
lots	130	70	200				
few	470	60	70				
class 'costly' (500 cars)							
PSs / color	red	blue	silver				
lots	150	110	100				
few	60	20	60				

Generative Methods: Do-it-Yourself

Generative Methods: Do-it-Yourself

Generative Methods: Naive Bayes

The Curse of Dimensionality

In case \mathbf{x} is high-dimensional, the class-conditional densities become increasingly **difficult to learn**.

- ► Let x be a boolean vector with n entries, i.e. x = (x₁,...,x_n)
- P(x|c) is a probability table with 2ⁿ entries

Example: Spam filtering

- 2 classes, spam and ham
- n=2 boolean features: x₁ (is the sender of the e-mail known?) and x₂ (does the e-mail contain the term 'viagra'?)

cla	ss 1 (S	SPAM)	cla	class 2 (HAM)				
X ₁ (sender) X ₂ ("Viagra")		$P(x_1, x_2 spam)$	X ₁ (sender)	X ₂ ("Viagra")	$P(x_1, x_2 ham)$			
0	0	0.78	0	0	0.18			
0	1	0.20	0	1	0.02			
1	0	0.01	1	0	0.78			
1	1	0.02	1	1	0.02			
20 fro	20% of all SPAM mails come							

from unknown senders and contain the term 'viagra'.

Generative Methods: Naive Bayes

- ► ... when n becomes large, we cannot learn all 2ⁿ entries reliably (→ curse of dimensionality)
- In spam filtering: Let x is a vector with 10,000 entries (which terms appear in the e-mail, which do not?)
- The probability tables holds 2^{10,000} entries!

Naive Bayes: Derivation

⊁

Idea of Naive Bayes: We simplify $P(\mathbf{x}|c)$ by assuming that the entries in the vector are *independent* (thus *Naive* Bayes)

Naive Bayes: Derivation

Naive Bayes

⊁

Remarks

- The number of entries to be learned decreases from 2^n to 2n.
- ▶ We can estimate these 2*n* entries, even from limited-size training sets.
- This principle works for any form of CCDs!

Naive Bayes: Do-it-Yourself

Exercise the above car example using Naive Bayes!

class 'cheap' (2000 cars)							
PSs / color	red	blue	silver				
lots	200	40	160				
few	800	300	500				
class 'medium' (1000 cars)							
PSs / color	red	blue	silver				
lots	130	130 70					
few	470	60	70				
class 'costly' (500 cars)							
PSs / color	red	blue	silver				
lots	150	110	100				
few	60	20	60				

Naive Bayes: Real-valued Features

$$P(\mathbf{x}|c) = P(x_1|c) \cdot P(x_2|c) \cdot \dots P(x_d|c)$$

- So far, we have studied Naive Bayes for discrete features
- Here, the CCDs $P(x_i|c)$ are **probability tables**
- However, this principle works for any form of CCDs!

Naive Bayes for real-valued Features

- ► For real-valued features, P(x_i|c) becomes a probability density function p(x_i|c)
- Examples: (multivariate) normal distribution, uniform distribution, exponential distribution, ...

$$p(\mathbf{x}|c) = p(x_1|c) \cdot p(x_2|c) \cdot \ldots \cdot p(x_d|c)$$

We will have a look at one example in the following.

Naive Bayes Example: OCR

- OCR = "Optical Character Recognition" (here: handwriting recognition)
- Given the picture of a letter, decide which letter is visible
- Simple feature vector: scale the image to 20 × 20 pixels and store the intensity values into a vector x ∈ ℝ⁴⁰⁰
- ▶ What might be a suitable distribution for *p*(**x**|*c*)?

OCR Training (Illustration)

Training = Estimating the classes' parameters $\mu_0,\mu_1,...,\mu_9$ and $\Sigma_0,\Sigma_1,...,\Sigma_9$

OCR: Naive Bayes

Training

- We apply Maximum Likelihood (ML) estimation for all classes, and obtain parameter estimates μ̂₀,..., μ̂₉ and Σ̂₀,...Σ̂₉.
- This way, we have learned the distribution of all classes (i.e., digits) in feature space.

Training with Naive Bayes?

- Remember that we want to use **naive Bayes**, i.e. we assume the single entries of the feature vectors are **independent**!
- ► What does this mean for our classifier? → the covariance matrix is a diagonal matrix!

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \dots & & & \\ 0 & 0 & \dots & \sigma_d^2 \end{pmatrix}$$

OCR: Applying our classifier

⊁

To recognize a new digit \mathbf{x} , we apply our Naive Bayes classifier:

OCR: Applying our classifier

We choose the class (digit) c for which $P(c|\mathbf{x})$ is maximal:

OCR: Code Sample

OCR: Sample Result SUDOKU Camera¹

¹data supplied by Mattis Rehmke – kudos!

OCR: Sample Result (cont'd)

⊁

handwriting recognition²

training set

0	0	0	0	0	0	0	5	5	5	5	5	5	5	
О	0	0	0	0	0	0	5	5	5	5	5	5	5	
0	0	0	0	0	0	0	5	5	5	5	5	5	5	
0	0	0	0	0	0	0	5	5	5	5	5	5	5	
1	1	1	Ĩ	1	1	1	6	6	6	6	6	6	6	
1	1	1	1	1	1	1	6	6	6	6	6	6	6	
1	1	1)	1	1	4	6	6	6	6	6	6	6	
1	1	1	Î	1	1	1	6	6	6	6	6	6	6	
2	2	2	2	2	2	2	7	7	7	7	7	7	7	
2	2	2	2	2	2	2	7	7	7	7	7	7	7	
г	2	2	2	2	2	2	7	7	7	7	7	7	7	
2	2	2	2	2	2	2	7	7	7	7	7	7	7	
3	3	3	3	3	3	3	8	8	8	B	8	8	8	
3	3	3	3	3	3	3.	8	8	8	8	8	8	8	
3	3	3	3	3	3	3.	8	8	8	8	8	8	8	
3	3	3	3	3	3	3	8	8	8	8	8	8	8	
4	4	4	4	4	4	4	9	9	9	9	9	9	9	
4	4	4	4	4	4	4	9	9	9	9	à	9	9	
ч	4	4	4	4	4	4	9	9	9	9	9	9	9	
4	4	4	4	4	4	4	9	9	9	9	9	9	9	

test set (incl. results)

00000000	5555555
00000000	5535555
0000000	5355555
0000000	5515555
0_0_6_0_9_6_5_(30 85 85 85 10 20 55 4
1 1 1 1 1 1 1	
1 1 1 1 1 1 6 1	6000000
	0,
	6 6 6 6 6 6 6 6 6 6 1 6 6 6 1 6 6 6 1 6 6 C 1
22222222	7777777
222222	7777777
2722222	777777
222232	7711772
A333223	8088888
3722223	« « 9 8 G 9 8
2222223	8808830
13123033330	8888884
⁹	8 4 8 3 8 9 9 4
444444	9 ,
444444	99999999
4444444	99999999
4444444	9199999

 $^{2}{\rm MIST} \ {\rm Handwritten} \ {\rm Digits} \ {\rm Database:} \ {\rm http://yann.lecun.com/exdb/mnist/}$

Overfitting in Naive Bayes

Run 1 (10 samples per class) (CCDs left, posterior right)

Overfitting in Naive Bayes

Posterior over 4 Runs (class 0 (top), class 1 (center), class 2 (bottom))

Overfitting (First Encounter)

Same experiment, but 100 samples per class

Naive Bayes: Discussion

Naive Bayes: Discussion (cont'd)

1. The No-free-lunch Theorem

2. Naive Bayes

3. Graphical Models

Naive Bayes: Graphical Illustration

- ► Generative models use the joint distribution P(x, c) of features x = (x₁,..., x_d) and classs c.
- Naive Bayes takes the simplest approach possible (all features are independent (given the class)!)

$$P(x_1,...,x_d|c) = P(x_1|c) \cdot P(x_2|c) \cdot ... \cdot P(x_d|c)$$

Problem: We loose interdependencies between variables:

 $P("six"|sports) \cdot P("pack"|sports) \neq P("six","pack"|sports)$

Graphical Models

- ► Naive Bayes is an example of a **graphical model**. Such models capture the dependency structure between random variables.
- ▶ There are different flavors (MRFs, CRFs, factor graphs, ...).

Here: Bayesian Networks

- Example³: credit card fraud detection
- Gas/Jewelry: was gas/jewelry bought in the last 24 hours?
- Age/Sex: age and sex of card holder

³from David Heckerman: "A Tutorial on Learning With Bayesian Networks", 1995.

Graphical Models

Definition (Bayesian Network)

Given a set of random variables $\mathbf{X} = \{X_1, ..., X_d\}$, a Bayesian network is a **directed acyclic graph** (DAG) with \mathbf{X} as nodes. Let $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_d)$ be a realization of $(X_1, ..., X_d)$, and $\mathbf{pa}(\mathbf{x}_i)$ be a realization of X_i 's parents. Then the joint distribution of all variables is given by:

$$P(\mathbf{x}) = \prod_{i=1}^{d} P(\mathbf{x}_i \,|\, \mathbf{pa}(\mathbf{x}_i))$$

Remarks In the example: $P(f, a, s, g, j) = P(f) \cdot P(a) \cdot P(s)$ $\cdot P(g|f) \cdot P(j|f, a, s)$ Fraud Age Sex Gas Jewelry

P(F=yes P(S) 0.25 **Bayesian Networks: Inference** 0.0001 0.5 30.50 0.40 Fraud Age Sex Building a Fraud Detector P(J=yes|F,A,S) P(G=yes|F) P(f|a, s, g, j)yes no <30 0.0001 0.2 F=ves no 30-50 M 0.0004 Gas Jewelrv 0.01 E=no no >50 M 0.0002 = P(f, a, s, g, i)/P(a, s, g, i)no <30 0.0005 no 30-50 E 0.002 no >50 E 0.001 $= P(f, a, s, g, j) / \sum P(f', a, s, g, j)$ $=\frac{P(f) \cdot P(a) \cdot P(s) \cdot P(g|f) \cdot P(j|f, a, s)}{\sum_{i} P(f') \cdot P(a) \cdot P(s) \cdot P(g|f) \cdot P(j|f', a, s)}$

Example

What is the probability of a fraud, given a < 30 male card owner who also purchased gas and jewelry?

$$P(F = yes, A \le 30, S = M, G = Y, J = Y) = 0.0001 \cdot 0.25 \cdot 0.5 \cdot 0.2 \cdot 0.2 = 5 \cdot 10^{-7}$$

$$P(F = no, A \le 30, S = M, G = Y, J = Y) = 0.9999 \cdot 0.25 \cdot 0.5 \cdot 0.01 \cdot 0.0001 = 1.25 \cdot 10^{-7}$$

$$P(F = yes|a, s, g, j) = \frac{5 \cdot 10^{-7}}{1.25 \cdot 10^{-7} + 5 \cdot 10^{-7}} = 80\%$$

Bayesian Networks: Inference (Naive)

Example

- Compute $P(X_{100} = 1) \rightarrow 4^{99}$ combinations to try
- ▶ Solution: Compute $P(X_2 = 1)$, then $P(X_3 = 1)$, ...

$$P(X_2 = 1) = \sum_{x_1, y_1 = 0}^{1} P(x_1) \cdot P(y_1) \cdot P(X_2 = 1 | x_1, y_1) = 0.2$$
$$P(X_3 = 1) = \sum_{x_2, y_2 = 0}^{1} P(x_2) \cdot P(y_2) \cdot P(X_3 = 1 | x_2, y_2) = 0.16$$

Bayesian Networks: Inference

Solution: Belief Propagation

- We compute **local** probability distributions ("messages") and pass them along the edges of the graph
- This approach is also known as message passing
- ▶ Effort in the example: 4 · 99
- Remark: This can become more complex in case of (undirected) circles in the graph.

Bayesian Networks: Discussion

What are the Benefits?⁴

- 1. "Bayesian networks handle incomplete data"
 - ► age unknown? → simply marginalize over latent variables: $P(f|g, s, j) = \sum_{a'} P(f, a', s, j, g) / \sum_{f', a'} P(f', a', s, j, g)$
- 2. "Bayesian networks model causal relationships"
 - We can learn the distributions and structure of the network!
 - Analysts can draw insight from this structure (in which user segment does an ad improve sales?)
- 3. "Bayesian networks combine domain knowledge and data"
 - we can learn some parts of the network while defining others manually

Drawbacks?

- Inference becomes intracktable quickly, especially for high-dimensional problems
- Same for learning (we don't deal with this here).

⁴from David Heckerman: "A Tutorial on Learning With Bayesian Networks", 1995.

References

[1] Scikit-Learn Landing Page.

http://scikit-learn.org (retrieved: Oct 2016).