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1. The No-free-lunch Theorem



The No-free-Lunch Theorem image from M1l

» We have seen different classifiers now

» They all have their benefits and drawbacks (SVMs are
preferred for small training sets, decision trees when few
features can lead to an accurate decision, ...)

» Key Question: Is there a classifier that is best

when averaging over many/all learning problems?
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The No-free-Lunch Theorem

"I one is interested in off-training-set error, then there are no a
priori distinctions between learning algorithms. All algorithms are
equivalent, on average.”

(www.no-free-lunch.org)

“For any two algorithms A and B, there are 'as many’ targets (or
priors over targets) for which A has lower expected OTS
(off-training-set) error than B as vice versa.”

(Wolpert 1997)
Remarks

» This means: If a classifier performs well on a certain set of
problems, then it necessarily performs worse on the set of
other problems.

> A target is a learning problem.

> The theorem does not take into account that some targets are
more likely than others.



No Free Lunch: lllustration



No Free Lunch
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2. Naive Bayes



Machine Learning and Bayes' Rule

» Our goal: Compute the posterior P(c|x).

» Observation: We can 'turn around’ the posterior
using Bayes' rule

“This is the “most important equation” in machine
learning.”
(S. Marsland)



Discriminative vs. Generative Models

In general, there are two general kinds of classifiers

1. Discriminative methods: use a direct model for P(c|x)
(or, alternatively, the decision boundary)

2. Generative methods: compute P(c) and P(x|c)
and plug them into Bayes' rule

Generative Methods

» P(c) is easy to compute: We estimate each
class’s frequency.

» 'two of three e-mails are spam’ — P(spam) = 0.1

» 'men and woman are equally frequent’ — P(0) = P(1) = 0.5
» P(x|c) is a bit more tricky

» for discrete features: P(x|c) is a probability table

» for continuous features: P(x|c) is a probability density



Generative Methods: Do-it-Yourself ?
e

We build a classifier for cars, with classes cheap,
medium-priced and costly. Our features are color and PSs.

> Turn the values in the below tables into probabilities. Where
are the priors, where the CCDs?

» Classify a red car with few PSs.

class 'cheap’ (2000 cars)
PSs / color || red | blue | silver

lots 200 | 40 160
few 800 | 300 500
class 'medium’ (1000 cars)
PSs / color H red [ blue [ silver
lots 130 | 70 200
few 470 | 60 70

class 'costly’ (500 cars)
PSs / color || red | blue | silver
lots 150 | 110 | 100
few 60 | 20 | 60
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Generative Methods: Do-it-Yourself
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Generative Methods: Do-it-Yourself
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Generative Methods: Naive Bayes

The Curse of Dimensionality

In case x is high-dimensional, the class-conditional densities

become increasingly difficult to learn.

> Let x be a boolean vector with
n entries, i.e. X = (X1, ..., Xp)

» P(x|c) is a probability table
with 2" entries

» Example: Spam filtering

» 2 classes, spam and ham

» n=2 boolean features: x;
(is the sender of the e-mail
known?) and x, (does the
e-mail contain the term
'viagra'?)

class 1 (SPAM) class 2 (HAM)
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0 0.18

1 0.02

0 0.78

1 0.02

20% of all SPAM mails come
from unknown senders
and contain the term 'viagra'.
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Generative Methods: Naive Bayes

» ... when n becomes large, we cannot learn all 2" entries

reliably (— curse of dimensionality)

> In spam filtering: Let x is a vector with 10,000 entries
(which terms appear in the e-mail, which do not?)

» The probability tables holds 210:090 entries!
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We need to learn each
of these entries from
a (limited) training set!
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Naive Bayes: Derivation

Idea of Naive Bayes: We simplify P(x|c) by assuming that the
entries in the vector are independent (thus Naive Bayes)
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Naive Bayes: Derivation
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Naive Bayes *

Remarks

» The number of entries to be learned decreases from 2" to 2n.

» We can estimate these 2n entries, even from limited-size
training sets.

» This principle works for any form of CCDs!
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Naive Bayes: Do-it-Yourself

Exercise the above car example using Naive Bayes!

class 'cheap’ (2000 cars)

PSs / color H red [ blue [ silver
lots 200 40 160
few 800 | 300 500

class 'medium’ (1000 cars)
PSs / color || red | blue | silver
lots 130 [ 70 | 200

few 470 | 60 | 70
class 'costly’ (500 cars)
PSs / color || red | blue | silver
lots 150 | 110 100

few 60 20 60




Naive Bayes: Real-valued Features *
P(x|c) = P(xi|c) - P(x2|c) - ...P(x4]|c)

» So far, we have studied Naive Bayes for discrete features
» Here, the CCDs P(x;|c) are probability tables
» However, this principle works for any form of CCDs!

Naive Bayes for real-valued Features
» For real-valued features, P(x;|c) becomes a probability
density function p(x;|c)
» Examples: (multivariate) normal distribution, uniform
distribution, exponential distribution, ...

p(x|c) = p(xi|c) - p(xe|c) - ... - p(xdlc)

» We will have a look at one example in the following.
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Naive Bayes Example: OCR

» OCR = “Optical Character Recognition”
(here: handwriting recognition)

v

Given the picture of a letter, decide which letter is visible

v

Simple feature vector: scale the image to 20 x 20 pixels
and store the intensity values into a vector x € R4%0

What might be a suitable distribution for p(x|c)?
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OCR Training (lllustration)

Training = Estimating the classes’ parameters g, p1, .., fi9
and 20, Zl, ey Zg

distribution distribution distribution
of class '0' of class '1' of class '2'
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OCR: Naive Bayes
Training
» We apply Maximum Likelihood (ML) estimation for all classes,
and obtain parameter estimates [ig, ..., [ig and 2g,...2g.

» This way, we have learned the distribution of all classes
(i.e., digits) in feature space.

Training with Naive Bayes?

» Remember that we want to use naive Bayes, i.e. we assume
the single entries of the feature vectors are independent!

» What does this mean for our classifier? — the covariance
matrix is a diagonal matrix!
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OCR: Applying our classifier

To recognize a new digit x, we apply our Naive Bayes classifier:
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OCR: Applying our classifier

We choose the class (digit) ¢ for which P(c|x) is maximal:
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OCR: Code Sample
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OCR: Sample Result

SUDOKU Cameral
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data supplied by Mattis Rehmke — kudos!
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OCR: Sample Result (cont'd)

handwriting recognition?

test set (incL results)

training set
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2
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Overfitting in Naive Bayes

Run 1 (10 samples per class)
(CCD:s left, posterior right)

Run 2 (10 samples per class)
(CCDs left, posterior right)

28



Overfitting in Naive Bayes

Posterior over 4 Runs (class 0 (top), class 1 (center), class 2 (bottom))
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Naive Bayes: Discussion
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Naive Bayes: Discussion (cont'd)
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Outline

3. Graphical Models
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Naive Bayes: Graphical lllustration

» Generative models use the joint distribution P(x, c) of
features x = (xq, ..., X4) and classs c.

» Naive Bayes takes the simplest approach possible
(all features are independent (given the class)!)

P(Xl, ...,Xd|C) == P(X1|C) . P(X2|C) PP P(Xd|C)

CORECPRED

» Problem: We loose interdependencies between variables:

P("six"|sports) - P("pack”|sports) # P("six".” pack”|sports)
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Graphical Models

» Naive Bayes is an example of a graphical model. Such models
capture the dependency structure between random variables.

» There are different flavors (MRFs, CRFs, factor graphs, ..

Here: Bayesian Networks
» Example3: credit card fraud detection

).

» Gas/Jewelry: was gas/jewelry bought in the last 24 hours?

» Age/Sex: age and sex of card holder

P(A)

P(F=yes]
% «30l02 P(s)
0.0001 3050 | 0.40 M| 05

no >50 M 0.0002
no <30 F 0.0005
no 30-50 F 0.002
no >50 F 0.001

P(G=yes|F)
F=yes 0.2
F=no 0.01

3from David Heckerman: “A Tutorial on Learning With Bayesian Networks”

, 1995.
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Graphical Models

Definition (Bayesian Network)

Given a set of random variables X = {Xi, ..., X4}, a Bayesian
network is a directed acyclic graph (DAG) with X as nodes.
Let x = (x1,...,Xq) be a realization of (X1, ..., Xy), and pa(x;)
be a realization of X;'s parents. Then the joint distribution of all
variables is given by:

d

P(x) = [ [ P(xi I pa(x;))

i=1

Remarks
> In the example: @ @ @
P(f)- P(a) - P(s)

P(f’ a? S7g7.j) =

- P(g|f) - P(j|f, a,5) Cevery)
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. P(F=yes) e ;(2“5) P(S)
Bayesian Networks: Inference Tows  &3[35 Wos

Building a Fraud Detector @
P(f a,s, g, . ) P(G=yes|F)
(Fl2.5.5.) =%

= P(f,a,s,g,j)/P(a,s,g,j)
= P(f,a,s,g,j)/zP(f’,a,s7g,j)
£
_ _ P(f)-P(a) - P(s) - P(glf) - P(ilf, a,5)
>p P(f")- P(a)- P(s)- P(g|f)- P(jIf',a,s)

Example
What is the probability of a fraud, given a < 30 male card owner

who also purchased gas and jewelry?

P(F =yes,A<30,S=M,G=Y,J=Y)=0.0001-0.25-05-02-02=5-10""
P(F=no, A<30,S=M,G=Y,J=Y)=0.9999 - 0.25- 0.5 -0.01-0.0001 = 1.25 - 10~

5.1

P(F :yes|a,s,g,j) = 1.25 M—‘,—F)M: 80%
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Bayesian Networks: Inference (Naive)

e S

P(X,=1]
0(41 ) X, Y, | P(X.,=1)
' 00 0.1
01 0.2
10 0.3
11 0.4

Example

» Compute P(X100 = 1) — 4%° combinations to try
» Solution: Compute P(X; = 1), then P(X3 =1), ...

1
P(X2 Z P P(X2 = ]_‘Xl yl) =0.2
x1,y1=0
1
P(Xs=1)= Y  P(x ) - P(X3 = 1|x2,y2) = 0.16

x2,y2=0
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Bayesian Networks: Inference

Moo
Tt D ¥

P(X,=1)
0.16

Solution: Belief Propagation

» We compute local probability distributions (“messages”)
and pass them along the edges of the graph

» This approach is also known as message passing
» Effort in the example: 4 - 99

» Remark: This can become more complex in case of
(undirected) circles in the graph.
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Bayesian Networks: Discussion

What are the Benefits?*
1. “Bayesian networks handle incomplete data”
» age unknown? — simply marginalize over latent variables:
P(f\g,s,j) = Za’ P(f’ a’,s,j,g)/ Zf’,a’ P(f/,alvs,jvg)
2. “Bayesian networks model causal relationships”

» We can learn the distributions and structure of the network!
» Analysts can draw insight from this structure (in which user
segment does an ad improve sales?)

3. “Bayesian networks combine domain knowledge and data”

» we can learn some parts of the network while
defining others manually

Drawbacks?
» Inference becomes intracktable quickly, especially for
high-dimensional problems

» Same for learning (we don't deal with this here).

*from David Heckerman: “A Tutorial on Learning With Bayesian Networks”, 1995.
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