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The No-free-Lunch Theorem image from [1]

I We have seen different classifiers now
I They all have their benefits and drawbacks (SVMs are

preferred for small training sets, decision trees when few
features can lead to an accurate decision, ...)

I Key Question: Is there a classifier that is best
when averaging over many/all learning problems?
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The No-free-Lunch Theorem
“If one is interested in off-training-set error, then there are no a
priori distinctions between learning algorithms. All algorithms are
equivalent, on average.”

(www.no-free-lunch.org)

“For any two algorithms A and B, there are ’as many’ targets (or
priors over targets) for which A has lower expected OTS
(off-training-set) error than B as vice versa.”

(Wolpert 1997)

Remarks

I This means: If a classifier performs well on a certain set of
problems, then it necessarily performs worse on the set of
other problems.

I A target is a learning problem.

I The theorem does not take into account that some targets are
more likely than others.
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No Free Lunch: Illustration
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No Free Lunch
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Machine Learning and Bayes’ Rule

I Our goal: Compute the posterior P(c |x).

I Observation: We can ’turn around’ the posterior
using Bayes’ rule

“This is the “most important equation” in machine
learning.”

(S. Marsland)
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Discriminative vs. Generative Models

In general, there are two general kinds of classifiers

1. Discriminative methods: use a direct model for P(c |x)
(or, alternatively, the decision boundary)

2. Generative methods: compute P(c) and P(x|c)
and plug them into Bayes’ rule

Generative Methods

I P(c) is easy to compute: We estimate each
class’s frequency.

I ’two of three e-mails are spam’ → P(spam) = 0.1
I ’men and woman are equally frequent’ → P(0) = P(1) = 0.5

I P(x|c) is a bit more tricky
I for discrete features: P(x|c) is a probability table
I for continuous features: P(x|c) is a probability density
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Generative Methods: Do-it-Yourself
We build a classifier for cars, with classes cheap,
medium-priced and costly. Our features are color and PSs.

I Turn the values in the below tables into probabilities. Where
are the priors, where the CCDs?

I Classify a red car with few PSs.

class ’cheap’ (2000 cars)
PSs / color red blue silver

lots 200 40 160
few 800 300 500

class ’medium’ (1000 cars)
PSs / color red blue silver

lots 130 70 200
few 470 60 70

class ’costly’ (500 cars)
PSs / color red blue silver

lots 150 110 100
few 60 20 60
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Generative Methods: Do-it-Yourself
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Generative Methods: Do-it-Yourself
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Generative Methods: Naive Bayes

The Curse of Dimensionality

In case x is high-dimensional, the class-conditional densities
become increasingly difficult to learn.

I Let x be a boolean vector with
n entries, i.e. x = (x1, ..., xn)

I P(x|c) is a probability table
with 2n entries

I Example: Spam filtering
I 2 classes, spam and ham
I n=2 boolean features: x1

(is the sender of the e-mail
known?) and x2 (does the
e-mail contain the term
’viagra’?)
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20% of all SPAM mails come
from unknown senders 
and contain the term 'viagra'.
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Generative Methods: Naive Bayes

I ... when n becomes large, we cannot learn all 2n entries
reliably (→ curse of dimensionality)

I In spam filtering: Let x is a vector with 10, 000 entries
(which terms appear in the e-mail, which do not?)

I The probability tables holds 210,000 entries!
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 We need to learn each 
of these entries from 
a (limited) training set!
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Naive Bayes: Derivation

Idea of Naive Bayes: We simplify P(x|c) by assuming that the
entries in the vector are independent (thus Naive Bayes)
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Naive Bayes: Derivation
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Naive Bayes

Remarks

I The number of entries to be learned decreases from 2n to 2n.

I We can estimate these 2n entries, even from limited-size
training sets.

I This principle works for any form of CCDs!
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Naive Bayes: Do-it-Yourself

Exercise the above car example using Naive Bayes!

class ’cheap’ (2000 cars)
PSs / color red blue silver

lots 200 40 160
few 800 300 500

class ’medium’ (1000 cars)
PSs / color red blue silver

lots 130 70 200
few 470 60 70

class ’costly’ (500 cars)
PSs / color red blue silver

lots 150 110 100
few 60 20 60
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Naive Bayes: Real-valued Features

P(x|c) = P(x1|c) · P(x2|c) · ...P(xd |c)

I So far, we have studied Naive Bayes for discrete features
I Here, the CCDs P(xi |c) are probability tables
I However, this principle works for any form of CCDs!

Naive Bayes for real-valued Features

I For real-valued features, P(xi |c) becomes a probability
density function p(xi |c)

I Examples: (multivariate) normal distribution, uniform
distribution, exponential distribution, ...

p(x|c) = p(x1|c) · p(x2|c) · ... · p(xd |c)

I We will have a look at one example in the following.
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Naive Bayes Example: OCR

I OCR = “Optical Character Recognition”
(here: handwriting recognition)

I Given the picture of a letter, decide which letter is visible

I Simple feature vector: scale the image to 20× 20 pixels
and store the intensity values into a vector x ∈ R400

I What might be a suitable distribution for p(x|c)?

class
class
class
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OCR Training (Illustration)

Training = Estimating the classes’ parameters µ0, µ1, ..., µ9
and Σ0,Σ1, ...,Σ9

  

distribution 
of class '0'

distribution 
of class '1'

distribution 
of class '2'

class
class
class
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OCR: Naive Bayes

Training

I We apply Maximum Likelihood (ML) estimation for all classes,
and obtain parameter estimates µ̂0, ..., µ̂9 and Σ̂0, ...Σ̂9.

I This way, we have learned the distribution of all classes
(i.e., digits) in feature space.

Training with Naive Bayes?

I Remember that we want to use naive Bayes, i.e. we assume
the single entries of the feature vectors are independent!

I What does this mean for our classifier? → the covariance
matrix is a diagonal matrix!

Σ =


σ2
1 0 ... 0

0 σ2
2 ... 0

...
0 0 ... σ2

d
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OCR: Applying our classifier

To recognize a new digit x, we apply our Naive Bayes classifier:
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OCR: Applying our classifier

We choose the class (digit) c for which P(c |x) is maximal:

24



OCR: Code Sample
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OCR: Sample Result

SUDOKU Camera1

training samples test samples (incl. results)

1data supplied by Mattis Rehmke – kudos!
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OCR: Sample Result (cont’d)

handwriting recognition2

training set test set (incl. results)

2
MIST Handwritten Digits Database: http://yann.lecun.com/exdb/mnist/
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Overfitting in Naive Bayes
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Run 1 (10 samples per class)

(CCDs left, posterior right)

Run 2 (10 samples per class)

(CCDs left, posterior right)



Overfitting in Naive Bayes
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Posterior over 4 Runs (class 0 (top), class 1 (center), class 2 (bottom))



Overfitting (First Encounter)
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Same experiment, but 100 samples per class



Naive Bayes: Discussion
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Naive Bayes: Discussion (cont’d)
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Naive Bayes: Graphical Illustration

I Generative models use the joint distribution P(x, c) of
features x = (x1, ..., xd) and classs c .

I Naive Bayes takes the simplest approach possible
(all features are independent (given the class)!)

P(x1, ..., xd |c) = P(x1|c) · P(x2|c) · ... · P(xd |c)

c

x
1

x
2

x
3

x
d...

I Problem: We loose interdependencies between variables:

P(′′six ′′|sports) · P(′′pack ′′|sports) 6= P(′′six ′′,′′ pack ′′|sports)
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Graphical Models

I Naive Bayes is an example of a graphical model. Such models
capture the dependency structure between random variables.

I There are different flavors (MRFs, CRFs, factor graphs, ...).

Here: Bayesian Networks

I Example3: credit card fraud detection

I Gas/Jewelry: was gas/jewelry bought in the last 24 hours?

I Age/Sex: age and sex of card holder

Fraud Age Sex

Gas Jewelry

P(F=yes)

0.0001

P(A)

0.25<=30
0.4030-50

P(S)

0.5M

P(G=yes|F)

0.2F=yes
F=no 0.01

P(J=yes|F,A,S)

0.2
0.0001
0.0004
0.0002
0.0005
0.002
0.001

yes  *      *
no   <30   M
no  30-50 M
no   >50   M
no  <30   F
no 30-50 F
no  >50   F

F A S

3from David Heckerman: “A Tutorial on Learning With Bayesian Networks”, 1995.
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Graphical Models

Definition (Bayesian Network)

Given a set of random variables X = {X1, ...,Xd}, a Bayesian

network is a directed acyclic graph (DAG) with X as nodes.

Let x = (x1, ..., xd) be a realization of (X1, ...,Xd), and pa(xi)

be a realization of Xi ’s parents. Then the joint distribution of all

variables is given by:

P(x) =
d∏

i=1

P(xi |pa(xi ))

Remarks
I In the example:

P(f , a, s, g , j) =P(f ) · P(a) · P(s)

· P(g |f ) · P(j |f , a, s)

36
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Bayesian Networks: Inference

Building a Fraud Detector

P(f |a, s, g , j)
= P(f , a, s, g , j)/P(a, s, g , j)

= P(f , a, s, g , j)/
∑
f ′

P(f ′, a, s, g , j)

=
P(f ) · P(a) · P(s) · P(g |f ) · P(j |f , a, s)∑
f ′ P(f ′) · P(a) · P(s) · P(g |f ) · P(j |f ′, a, s)

Example

What is the probability of a fraud, given a < 30 male card owner
who also purchased gas and jewelry?

P(F = yes,A ≤ 30,S = M,G = Y , J = Y ) = 0.0001 · 0.25 · 0.5 · 0.2 · 0.2 = 5 · 10−7

P(F = no, A ≤ 30, S = M,G = Y , J = Y ) = 0.9999 · 0.25 · 0.5 · 0.01 · 0.0001 = 1.25 · 10−7

P(F = yes|a, s, g , j) =
5 ·��10−7

1.25 ·��10−7 + 5 ·��10−7
= 80%
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0.0001

P(A)
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0.4030-50

P(S)

0.5M

P(G=yes|F)

0.2F=yes
F=no 0.01

P(J=yes|F,A,S)

0.2
0.0001
0.0004
0.0002
0.0005
0.002
0.001

yes  *      *
no   <30   M
no  30-50 M
no   >50   M
no  <30   F
no 30-50 F
no  >50   F
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Bayesian Networks: Inference (Naive)

X
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X
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Example

I Compute P(X100 = 1) → 499 combinations to try

I Solution: Compute P(X2 = 1), then P(X3 = 1), ...

P(X2 = 1) =
1∑

x1,y1=0

P(x1) · P(y1) · P(X2 = 1|x1, y1) = 0.2

P(X3 = 1) =
1∑

x2,y2=0

P(x2) · P(y2) · P(X3 = 1|x2, y2) = 0.16
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Bayesian Networks: Inference

X
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X
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Solution: Belief Propagation

I We compute local probability distributions (“messages”)
and pass them along the edges of the graph

I This approach is also known as message passing

I Effort in the example: 4 · 99

I Remark: This can become more complex in case of
(undirected) circles in the graph.

39



Bayesian Networks: Discussion

What are the Benefits?4

1. “Bayesian networks handle incomplete data”
I age unknown? → simply marginalize over latent variables:

P(f |g , s, j) =
∑

a′ P(f , a′, s, j , g)/
∑

f ′,a′ P(f ′, a′, s, j , g)

2. “Bayesian networks model causal relationships”
I We can learn the distributions and structure of the network!
I Analysts can draw insight from this structure (in which user

segment does an ad improve sales?)

3. “Bayesian networks combine domain knowledge and data”
I we can learn some parts of the network while

defining others manually

Drawbacks?
I Inference becomes intracktable quickly, especially for

high-dimensional problems

I Same for learning (we don’t deal with this here).

4from David Heckerman: “A Tutorial on Learning With Bayesian Networks”, 1995.
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