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1. The No-free-lunch Theorem




The No-free-Lunch Theorem imase from 1

Nearest Nelghbors a RBF SVM Decision Tree Random Forest

> We have seen different classifiers now

> They all have their benefits and drawbacks (SVMs are
preferred for small training sets, decision trees when few
features can lead to an accurate decision, ...)

> Key Question: Is there a classifier that is best
when averaging over many/all learning problems?
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The No-free-Lunch Theorem

“If one is interested in off-training-set error, then there are no a
priori distinctions between learning algorithms. All algorithms are
equivalent, on average.”

(www.no-free-lunch.org)

“For any two algorithms A and B, there are 'as many’ targets (or
priors over targets) for which A has lower expected OTS
(off-training-set) error than B as vice versa.”

(Wolpert 1997)

Remarks

> This means: If a classifier performs well on a certain set of
problems, then it necessarily performs worse on the set of
other problems.

> A target is a learning problem.

> The theorem does not take into account that some targets are
more likely than others.




No Free Lunch: lllustration
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2. Naive Bayes
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Machine Learning and Bayes' Rule *

> Our goal: Compute the posterio{ P(c|x).
> QObservation: We can "turn aroun osterior

using Ba esf‘ rule - N PRNOET \Cé“(fg;)ﬁo
et Tee) _ (R gt
P I GQ)

POem0 ~ e i
a _ P9 PKie)

“This is the “most important equation” in machine
learning.”

(S. Marsland)
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Discriminative vs. Generative Models

In general, there are two general kinds of classifiers

1. Discriminative methods: use a direct model for P(c|x)
(or, alternatively, the decision boundary)

2. Generative methods: compute P(c) and P(x|c)
and plug them into Bayes’ rule

Generative Methods

> P(c) is easy to compute: We estimate each
class’s frequency. 272
> "two of three e-mails are spam’ — P(spam) =01
> 'men and woman are equally frequent’ — P(0) = P(1) = 0.5
> P(x|c) is a bit more tricky
> for discrete features: P(x|c) is a probability table
> for continuous features: P(x|c) is a probability density

Generative Methods: Do-it-Yourself

We build a classifier for cars, with classes cheap,
medium-priced and costly. Our features are color and PSs.

> Turn the values in the below tables into probabilities. Where
are the priors, where the CCDs?

> Classify a red car with few PSs.

Ple) ) Pxle)

class 'cheap’ (2000 cars)

PSs / color || red | blue | silver
lots 200 40 160 N, ) 2000
few 800 | 300 | 500 ?Cdcéa/)) =
class 'medium’ (1000 cars) | $Seo
PSs / color || red | blue | silver
lots 130 | 70 | 200 ‘ , , Sco
Tew 470 | 60 | 70 PG}W el f ol J =
class "costly’ (500 cars) ' O\(f Zeco
PSs / color || red | blue | silver
lots 150 | 110 100

few 60 20 60
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Generative Methods: Do-it-Yourself
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Generative Methods: Do-it-Yourself
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Generative Methods: Naive Bayes

The Curse of Dimensionality

In case x is high-dimensional, the class-conditional densities
become increasingly difficult to learn.

. class 1 (SPAM) class 2 (HAM)
> Let x be a boolean vector with TR P

n entries, i.e. X = (X1, ..., Xp)

> P(x|c) is a probability table
with 2" entries

X,(sender)

e
oo
1

> Example: Spam filtering o

- 078 0O

calor ' To i

0 0
> 2 classes, spam and ham 0 020 |0 0.02
> n=2 boolean features: x; e T | o8
(is the sender of the e-mail 1 o2 A 1 0.02

known?) and x, (does the
e-mail contain the term
'viagra'?)

20% of all SPAM mails come
from unknown senders ,
and contain the term 'viagra'.
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Generative Methods: Naive Bayes *

> ... when n becomes large, we cannot learn all 2" entries
reliably (— curse of dimensionality)

> In spam filtering: Let x is a vector with 10,000 entries
(which terms appear in the e-mail, which do not?)

> The probability tables holds 219990 entries!

n=10,000 ?

We need to learn each
of these entries from
a (limited) training set! -
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Naive Bayes: Derivation

Idea of Naive Bayes: We simplify, P(x|c) by assuming that the
entries in the vector ar@@hus Naive Bayes)
EQ‘IC) = Pl - HXle) .. -Riyle)
/ PCC IXB = ?((’\ :

Naive Bayes: Derivation | »*
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Naive Bayes

Remarks

> The number of entries to be learned decreases from 2" to 2n.

> We can estimate these 2n entries, even from limited-size
training sets.

> This principle works for any form of CCDs!
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Naive Bayes: Do-it-Yourself *

Exercise the above car example using Naive Bayes!

class 'cheap’ (2000 cars)
PSs / color || red | blue | silver

lots__ [/200 | 40 | 160 ‘?(l‘eae , Few : cﬂg;{f) ==
fe'w &%0880 500 . V | |
class 'medi cars) ?(Ce(equ ., 'P/(P/'ﬁge////éu/

PSs / color || red | blue | silver

lots 130 70 200

class 'costly’ (500 cars) ‘
PSs / color || red | blue | silver 10C ¢ ) j}é_@\@

lots 150 | 110 | 100 2000 2Co0
few 60 20 60

few 470 | 60 70 7 - r]‘)(r?a@ / CL‘QQ/J ) - P@UJ&«Q}/

e
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Naive Bayes: Real-valued Features
P(x|c) = P(x1|c) - P(x2|c) - ...P(xq|c)

> So far, we have studied Naive Bayes for discrete features
> Here, the CCDs P(x;|c) are probability tables
» However, this principle works for any form of CCDs!

Naive Bayes for real-valued Features

> For real-valued features, P(x;|c) becomes a probability
density function p(x;|c)

> Examples: (multivariate) normal distribution, uniform
distribution, exponential distribution, ...

p(x|c) = p(xlc) - plxelc) - .. - plxalc)

> We will have a look at one example in the following.
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Naive Bayes Example: OCR

> OCR = “Optical Character Recognition”
(here: handwriting recognition)

> Given the picture of a letter, decide which letter is visible

> Simple feature vector: scale the image to 20 x 20 pixels
and store the intensity values into a vector x € R0

> What might be a suitable distribution for p(x|c)?
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OCR Training (lllustration)

Training = Estimating the classes’ parameters ug, t1, --., 49
and Zo, Zl, — 29

28, als
2 4 6 8 10 12

distribution
of class '1' of class "2’

.
RO
% 2 4 6 8 10 12

distribution distribution

of class '0'

21

OCR: Naive Bayes
Training
> We apply Maximum Likelihood (ML) estimation for all classes,
and obtain parameter estimates [, ..., [ig and X, ...2o9.

> This way, we have learned the distribution of all classes
(i.e., digits) in feature space.

Training with Naive Bayes?

> Remember that we want to use naive Bayes, i.e. we assume
the single entries of the feature vectors are independent!

» What does this mean for our classifier? — the covariance
matrix is a diagonal matrix!
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OCR: Applying our classifier

To recognize a new digit x, we apply our Naive Bayes classifier:
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OCR: Applying our classifier *

We choose the class (digit) ¢ for which P(c|x) is maximal:
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OCR: Code Sample
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OCR: Sample Result
SUDOKU Cameral
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data supplied by Mattis Rehmke — kudos!

results)
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test set (incl. results)

)

d

(cont

handwriting recognition?

training set

OCR: Sample Result
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MIST Handwritten Digits Database: http://yann.lecun.com/exdb/mnist/
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Run 1 (10 samples per class)
(CCDs left, posterior right)

Overfitting in Naive Bayes




Overfitting in Naive Bayes

Posterior over 4 Runs (class 0 (top), class 1 (center), class 2 (bottom))
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Overfitting (First Encounter) *

Same experiment, but 100 samples per class
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Naive Bayes: Discussion
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Naive Bayes: Discussion (cont'd)
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3. Graphical Models
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Naive Bayes: Graphical lllustration

> Generative models use the joint distribution P(x, c) of
features x = (xi, ..., x4) and classs c.

> Naive Bayes takes the simplest approach possible
(all features are independent (given the class)!)

P(x1, ..., x4|c) = P(x1|c) - P(x2|c) - ... - P(xq4]c)

>

> Problem: We loose interdependencies between variables:

P("six"|sports) - P(" pack” |sports) # P("six",” pack”|sports)
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Graphical Models

> Naive Bayes is an example of a graphical model. Such models
capture the dependency structure between random variables.
> There are different flavors (MRFs, CRFs, factor graphs, ...).

Here: Bayesian Networks
> Example3: credit card fraud detection
> Gas/Jewelry: was gas/jewelry bought in the last 24 hours?
> Age/Sex: age and sex of card holder

P(A)
P(F=
ﬂm <=j—30 .25 P(S)
0.0001 3050 | 0.40 M| 05
P(G:yes":)‘\\‘

F=yes | 0.2
F=no | 0.01

3from David Heckerman: “A Tutorial on Learning With Bayesian Networks”, 1995.

F A S |PQJ=yes|FA,S)
yes * * 0.2

no <30 M 0.0001

no 30-50 M 0.0004

no >50 M 0.0002

no <30 F 0.0005
no 30-50 F 0.002
no >50 F 0.001
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Graphical Models *

Definition (Bayesian Network)

Given a set of random variables X = {Xi, ..., X4}, a Bayesian
network is a directed acyclic graph (DAG) with X as nodes.
Let x = (xy,...,Xq) be a realization of (X1, ..., Xy), and pa(x;)
be a realization of X;'s parents. Then the joint distribution of all
variables is given by:

d
P(x) = ] | P(xi|pa(x)))
i=1

Remarks
:]ln the example:
P(F,a,5,8.j) =P(f) - P(a) - P(s) N\

. P(g|f) - P(jlf,a,5) (Jeweiry)
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. P(F=yes) P(R) S
Bayesian Networks: Inference Tem: 23183 Ham
Building a Fraud Detector @
F A s | P3=yes|FA,S)

P(fla,s,8.)) Eoou | i

P(G_YESI no <30 M 0.0001
lifﬁs 831 @ no 30-50 M
H : - . no >50 M
= P(f,a,s,g,j)/P(a,s,g,))

0.0004
no 30—50 F

= P(f,a,s,8,§)/ > _ P(f',a,5,8,j)
fl

_ __P(f)- P(a) - P(s) - P(glf) - P(jlf,a,s)
> P(f') - P(a) - P(s) - P(glf) - P(jlf’,a,5)

/

0.001

Example

What is the probability of a fraud, given a < 30 male card owner
who also purchased gas and jewelry?

P(F = yes,A<30,S=M,G=Y,J=Y)=0.0001-0.25-0.5-0.2-02=5-10""7

P(F =no, A<30,S=M,G=Y,J=Y)=0.9999-0.25-0.5-0.01-0.0001 = 1.25- 10~/

5.-
P(F = yes|a,s,g,j) = 1677
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Bayesian Networks: Inference (Naive) *

W EATIAED? e DD

P(X1'1)

Example

> Compute P(Xi00 = 1) — 4°° combinations to try
> Solution: Compute P(X2 = 1), then P(X3 =1), ...

1
P(Xp=1)= > P(x)-P(y1)- P(Xa = 1|x1,y1) = 0.2

x1,y1=0
1

P(Xs=1)= Y P(x)-P(y2) - P(Xs = 1|5z, y2) = 0.16

x2,y>=0
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Bayesian Networks: Inference

- | P(Y/D)
N~ 1 N 2]/
i S o o o SEC O
\ / \ Ay / A
P(X,=1)
| 0.16

Solution: Belief Propagation

> We compute local probability distributions (“messages”)
and pass them along the edges of the graph

> This approach is also known as message passing
> Effort in the example: 4 - 99

> Remark: This can become more complex in case of
(undirected) circles in the graph.
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Bayesian Networks: Discussion *

What are the Benefits?*

1. “Bayesian networks handle incomplete data”
> age unknown? — simply marginalize over latent variables:
P(flg,s,j) = >, P(f,a',s,j,8)/ > ¢ » P(f',d;5,),8)
2. "Bayesian networks model causal relationships”

> We can learn the distributions and structure of the network!
> Analysts can draw insight from this structure (in which user
segment does an ad improve sales?)
3. "Bayesian networks combine domain knowledge and data”

> we can learn some parts of the network while
defining others manually

Drawbacks?

> Inference becomes intracktable quickly, especially for
high-dimensional problems

> Same for learning (we don't deal with this here).

*from David Heckerman: “A Tutorial on Learning With Bayesian Networks”, 1995.
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