

Machine Learning

- winter term 2016/17 -

Chapter 11: Naive Bayes and Graphical Models

Prof. Adrian Ulges
Masters "Computer Science"
DCSM Department
RheinMain University of Applied Sciences

Outline

- 1. The No-free-lunch Theorem
- 2. Naive Bayes
- 3. Graphical Models

The No-free-Lunch Theorem image from [1]

- ▶ We have seen different classifiers now
- ▶ They all have their **benefits** and **drawbacks** (SVMs are preferred for small training sets, decision trees when few features can lead to an accurate decision, ...)
- ► **Key Question**: Is there a classifier that is **best** when averaging over **many/all learning problems**?

-

The No-free-Lunch Theorem

"If one is interested in off-training-set error, then there are no a priori distinctions between learning algorithms. All algorithms are equivalent, on average."

(www.no-free-lunch.org)

"For any two algorithms A and B, there are 'as many' targets (or priors over targets) for which A has lower expected OTS (off-training-set) error than B as vice versa."

(Wolpert 1997)

Remarks

- ▶ **This means**: If a classifier performs well on a certain set of problems, then it necessarily performs worse on the set of other problems.
- A target is a learning problem.
- ► The theorem does not take into account that some targets are more likely than others.

Outline

- 1. The No-free-lunch Theorem
- 2. Naive Bayes
- 3. Graphical Models

Machine Learning and Bayes' Rule

- ▶ Our **goal**: Compute the **posterior** $P(c|\mathbf{x})$.
- ▶ **Observation**: We can 'turn around' the posterior using Bayes' rule

P(clx postenor $\frac{P(x,c)}{P(x)} =$

PC) P(x)

classconditional density

P(c).P(xie) \(\sigma\) P(xic')

"This is the "most important equation" in machine learning."

(S. Marsland)

Discriminative vs. Generative Models

In general, there are two general kinds of classifiers

- 1. Discriminative methods: use a direct model for P(c|x)(or, alternatively, the decision boundary)
- 2. Generative methods: compute P(c) and P(x|c)and plug them into Bayes' rule

Generative Methods

- ▶ **P(c)** is easy to compute: We estimate each class's frequency.
 - ▶ 'two of three e-mails are spam' $\rightarrow P(\text{spam}) = 0.1$
 - 'men and woman are equally frequent' $\rightarrow P(0) = P(1) = 0.5$
- $\triangleright P(\mathbf{x}|c)$ is a bit more **tricky**
 - for discrete features: $P(\mathbf{x}|c)$ is a probability table
 - for continuous features: $P(\mathbf{x}|c)$ is a probability density

Generative Methods: Do-it-Yourself

We build a classifier for cars, with classes cheap, medium-priced and costly. Our features are color and PSs.

- ▶ Turn the values in the below tables into probabilities. Where are the priors, where the CCDs?
- Classify a red car with few PSs.

class 'cheap' (2000 cars)				
PSs / color	red	blue	silver	
lots	200	40	160	
few	few 800		500	
class 'medium' (1000 cars)				
PSs / color	red	blue	silver	
lots	130	70	200	
lots few	130 470	70 60	200 70	
	470			
few	470	60		
few class 'costly	470	60 cars)	70	

$$P(cheap) = \frac{2000}{3500}$$

P(c), P(x/c)
$$P(\text{cheap}) = \frac{2000}{3500}$$

$$P(\text{few, red | cheap}) = \frac{800}{2000}$$

Generative Methods: Do-it-Yourself

11

Generative Methods: Do-it-Yourself

Generative Methods: Naive Bayes

The Curse of Dimensionality

In case x is high-dimensional, the class-conditional densities become increasingly difficult to learn.

- ▶ Let x be a boolean vector with *n* entries, i.e. $\mathbf{x} = (x_1, ..., x_n)$
- $\triangleright P(\mathbf{x}|c)$ is a probability table with 2^n entries
- Example: Spam filtering
 - 2 classes, spam and ham
 - ▶ n=2 boolean features: x₁ (is the sender of the e-mail known?) and x_2 (does the e-mail contain the term 'viagra'?)

class 1 (SPAM)		class 2 (HAM)			
X,(sender)	X ₂ ("Viagra")	P(x ₁ ,x ₂ spam)	X ₁ (sender)	X ₂ ("Viagra")	P(x ₁ ,x ₂ ham)
0	0	0.78	0	0	0.18
0	1 1	0.20	0	1	0.02
1	0	0.01	1	0	0.78
1	1	0.02	1	1	0.02
fro	m un	all SP/ known tain th	sen	ders	

Generative Methods: Naive Bayes

- \triangleright ... when n becomes large, we cannot learn all 2^n entries reliably (\rightarrow curse of dimensionality)
- ▶ In spam filtering: Let x is a vector with 10,000 entries (which terms appear in the e-mail, which do not?)
- ▶ The probability tables holds 2^{10,000} entries!

n=10,000?

We need to learn each of these entries from a (limited) training set!

Naive Bayes: Derivation

Idea of Naive Bayes: We simplify $P(\mathbf{x}|c)$ by assuming that the entries in the vector are *independent* (thus *Naive* Bayes)

$$P(x|c) = P(x_1|c) \cdot P(x|c) \cdot P(x_1|c)$$

$$P(c|x) = P(c) \cdot \prod_{i=1}^{d} P(x_i|c)$$

$$\sum_{i=1}^{d} P(x_i|c)$$

$$\sum_{i=1}^{d$$

Naive Bayes: Derivation

Naive Bayes

Remarks

- ▶ The number of entries to be learned decreases from 2^n to 2n.
- We can estimate these 2n entries, even from limited-size training sets.
- ► This principle works for **any** form of CCDs!

17

Naive Bayes: Do-it-Yourself

Exercise the above car example using Naive Bayes!

class 'cheap' (2000 cars)

class cheap (2000 cars)					
PSs / color	red	blue	silver		
lots	200	40	160		
few	800	300	500		
class 'medium' (1000 cars)					
PSs / color	red	blue	silver		
	T				
lots	130	70	200		
lots few	130 470	70 60	200 70		
	470				
few	470	60			
few class 'costly	470 ' (500	60 cars)	70		

P(red, few, cheap) =

P(cheap) · P(red, few I cheap)

" · P(red I cheap) · P(few Cheap)

1000 · 1600

2000

Naive Bayes: Real-valued Features

$$P(\mathbf{x}|c) = P(x_1|c) \cdot P(x_2|c) \cdot ... P(x_d|c)$$

- ▶ So far, we have studied Naive Bayes for discrete features
- ▶ Here, the CCDs $P(x_i|c)$ are **probability tables**
- ▶ However, this principle works for any form of CCDs!

Naive Bayes for real-valued Features

- For real-valued features, $P(x_i|c)$ becomes a **probability** density function $p(x_i|c)$
- **Examples**: (multivariate) normal distribution, uniform distribution, exponential distribution, ...

$$p(\mathbf{x}|c) = p(x_1|c) \cdot p(x_2|c) \cdot \dots \cdot p(x_d|c)$$

We will have a look at one example in the following.

Naive Bayes Example: OCR

- OCR = "Optical Character Recognition" (here: handwriting recognition)
- ▶ Given the picture of a letter, decide which letter is visible
- ▶ Simple **feature vector**: scale the image to 20×20 pixels and store the intensity values into a vector $\mathbf{x} \in \mathbb{R}^{400}$
- ▶ What might be a suitable distribution for $p(\mathbf{x}|c)$?

OCR Training (Illustration)

Training = Estimating the classes' parameters $\mu_0, \mu_1, ..., \mu_9$ and $\Sigma_0, \Sigma_1, ..., \Sigma_9$

0.1

OCR: Naive Bayes

Training

- ▶ We apply Maximum Likelihood (ML) estimation for all classes, and obtain parameter estimates $\hat{\mu}_0, ..., \hat{\mu}_9$ and $\hat{\Sigma}_0, ... \hat{\Sigma}_9$.
- ► This way, we have learned the **distribution of all classes** (i.e., digits) in feature space.

Training with Naive Bayes?

- ▶ Remember that we want to use **naive Bayes**, i.e. we assume the single entries of the feature vectors are **independent**!
- What does this mean for our classifier? → the covariance matrix is a diagonal matrix!

$$\Sigma = \begin{pmatrix} \sigma_1^2 & 0 & \dots & 0 \\ 0 & \sigma_2^2 & \dots & 0 \\ \dots & & & & \\ 0 & 0 & \dots & \sigma_d^2 \end{pmatrix}$$

OCR: Applying our classifier

To recognize a new digit x, we apply our Naive Bayes classifier:

23

OCR: Applying our classifier

We choose the class (digit) c for which $P(c|\mathbf{x})$ is maximal:

OCR: Code Sample

OCR: Sample Result SUDOKU Camera¹

25

samples (incl. results)

¹data supplied by Mattis Rehmke – kudos!

OCR: Sample Result (cont'd)

handwriting recognition²

training set	
00000000	555555 555555 555555 555555
/	66666666666666666666666666666666666666
2222222 2272222 2272222 222222	71777777777777777777777777777777777777
3333333 3333333 3333333	88888888 8888888 888888
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	9999999 9999999 999999

test set (incl. results)

27

Overfitting in Naive Bayes

Run 1 (10 samples per class) (CCDs left, posterior right)

Run 2 (10 samples per class) (CCDs left, posterior right)

 $^{^2\}mathsf{MIST}\ \mathsf{Handwritten}\ \mathsf{Digits}\ \mathsf{Database} \colon \mathsf{http://yann.lecun.com/exdb/mnist/}$

Overfitting in Naive Bayes

Posterior over 4 Runs (class 0 (top), class 1 (center), class 2 (bottom))

29

Overfitting (First Encounter)

Same experiment, but 100 samples per class

Naive Bayes: Discussion (cont'd)

Outline

- 1. The No-free-lunch Theorem
- 2. Naive Bayes
- 3. Graphical Models

33

Naive Bayes: Graphical Illustration

- ▶ Generative models use the joint distribution $P(\mathbf{x}, c)$ of features $\mathbf{x} = (x_1, ..., x_d)$ and classs c.
- ▶ Naive Bayes takes the simplest approach possible (all features are independent (given the class)!)

$$P(x_1,...,x_d|c) = P(x_1|c) \cdot P(x_2|c) \cdot ... \cdot P(x_d|c)$$

Problem: We loose interdependencies between variables:

$$P("six"|sports) \cdot P("pack"|sports) \neq P("six","pack"|sports)$$

Graphical Models

- ▶ Naive Bayes is an example of a **graphical model**. Such models capture the dependency structure between random variables.
- ▶ There are different flavors (MRFs, CRFs, factor graphs, ...).

Here: Bayesian Networks

- ▶ Example³: credit card fraud detection
- Gas/Jewelry: was gas/jewelry bought in the last 24 hours?
- Age/Sex: age and sex of card holder

³from David Heckerman: "A Tutorial on Learning With Bayesian Networks", 1995.

35

Graphical Models

Definition (Bayesian Network)

Given a set of random variables $\mathbf{X} = \{X_1, ..., X_d\}$, a Bayesian network is a **directed acyclic graph** (DAG) with \mathbf{X} as nodes. Let $\mathbf{x} = (\mathbf{x}_1, ..., \mathbf{x}_d)$ be a realization of $(X_1, ..., X_d)$, and $\mathbf{pa}(\mathbf{x_i})$ be a realization of X_i 's parents. Then the joint distribution of all variables is given by:

$$P(\mathbf{x}) = \prod_{i=1}^{d} P(\mathbf{x}_i \mid \mathbf{pa}(\mathbf{x}_i))$$

Remarks

In the example: $P(f, a, s, g, j) = P(f) \cdot P(a) \cdot P(s)$ $\cdot P(g|f) \cdot P(j|f, a, s)$

Bayesian Networks: Inference

Building a Fraud Detector

Example

What is the probability of a fraud, given a < 30 male card owner who also purchased gas and jewelry?

$$P(F = yes, A \le 30, S = M, G = Y, J = Y) = 0.0001 \cdot 0.25 \cdot 0.5 \cdot 0.2 \cdot 0.2 = 5 \cdot 10^{-7}$$

$$P(F = no, A \le 30, S = M, G = Y, J = Y) = 0.9999 \cdot 0.25 \cdot 0.5 \cdot 0.01 \cdot 0.0001 = 1.25 \cdot 10^{-7}$$

$$P(F = yes | a, s, g, j) = \frac{5 \cdot 10^{-7}}{1.25 \cdot 10^{-7} + 5 \cdot 10^{-7}} = 80\%$$

Fraud

Age

Gas

Sex

Jewelry

P(J=yes|F,A,S)

0.0004 0.0002 0.0005

Bayesian Networks: Inference (Naive)

Example

- ► Compute $P(X_{100} = 1) \rightarrow 4^{99}$ combinations to try
- **Solution**: Compute $P(X_2 = 1)$, then $P(X_3 = 1)$, ...

$$P(X_2 = 1) = \sum_{x_1, y_1 = 0}^{1} P(x_1) \cdot P(y_1) \cdot P(X_2 = 1 | x_1, y_1) = 0.2$$

$$P(X_3 = 1) = \sum_{x_2, y_2 = 0}^{1} P(x_2) \cdot P(y_2) \cdot P(X_3 = 1 | x_2, y_2) = 0.16$$

Bayesian Networks: Inference

Solution: Belief Propagation

- We compute local probability distributions ("messages") and pass them along the edges of the graph
- ► This approach is also known as message passing
- ▶ Effort in the example: 4 · 99
- Remark: This can become more complex in case of (undirected) circles in the graph.

39

Bayesian Networks: Discussion

What are the Benefits?⁴

- 1. "Bayesian networks handle incomplete data"
 - ▶ age unknown? → simply marginalize over latent variables: $P(f|g,s,j) = \sum_{a'} P(f,a',s,j,g) / \sum_{f',a'} P(f',a',s,j,g)$
- 2. "Bayesian networks model causal relationships"
 - We can learn the distributions and structure of the network!
 - Analysts can draw insight from this structure (in which user segment does an ad improve sales?)
- 3. "Bayesian networks combine domain knowledge and data"
 - we can learn some parts of the network while defining others manually

Drawbacks?

- Inference becomes intracktable quickly, especially for high-dimensional problems
- ▶ Same for learning (we don't deal with this here).

⁴from David Heckerman: "A Tutorial on Learning With Bayesian Networks", 1995.

References

[1] Scikit-Learn Landing Page. http://scikit-learn.org (retrieved: Oct 2016).

41