
Machine Learning
– winter term 2016/17 –

Chapter 12:
Recommender Systems

Prof. Adrian Ulges
Masters “Computer Science”

DCSM Department
RheinMain University of Applied Sciences

11. Dezember 2016

1

Recommender Systems: Examples

2

Recommender Systems

What are ’Recommenders’?

I Recommender systems suggest users potentially interesting
Items (movies, books, jobs, ...).

I From a machine learning perspective,
a recommender’s goal is to predict user preference

I Given are a user and an item
I ... a product
I ... a person or interest group (potential friends)
I ... a piece of text/music/video
I ... a line of code
I ...

Why Recommenders?

I Recommenders are a helpful alternative to (active) search:
They reveal options that users would not have searched for
by themselves (discovery).

3

Recommender Systems: Formalization

Recommenders: Setup?

I Do recommenders match any of the learning setups
we know so far? (classification? clustering? regression?)

I Novelty: There are two kinds of ’samples’ (users vs. items).
Recommending is about learning a connection between both.

Formalization: Basic Questions
I What information is available to describe users?

I the user identity
I past ratings (unary? binary? real-valued?)
I a user profile (demographics, gender, age, ...)?
I links to other users (friend relationships...)?

I What information is available to describe items?
I the object identity
I past ratings (unary? binary? real-valued?)
I a description of the item by text/features?
I links to other items (e.g., books by the same author)?

4

Recommender Systems: Other (practical) Aspects

I Domain: What type of items are recommended?

I Input: How are ratings collected
(implicit vs. explicit feedback)?

I Business Purpose: Should the recommender ...keep people
interested (YouTube)? ...sell stuff (amazon)? ...build a
community (linkedin)?

I Personalization: Should recommendations be generic?
Should they match the user’s demographic / long-term
interests / short-term activity (ketchup → burgers)?

I Privacy, Monetization, Trust: Should any personal
information be revealed? Are recommendations monetized?
Is there vulnerability to spam?

5

Recommender-Algorithmen images from [2] [1]

In the following, we will have a look at some
common recommender algorithms:

I Association rule learning (↙)

I user-based collaborative filtering (↗)

I item-based collaborative filtering (↗)

I matrix factorization (↘)

6

user 3

user 2

user 1

user 5

user 4

item 1
item 2

item 3

item 4

Outline

1. Collaborative Filtering

2. Collaborative Filtering II: Matrix Factorization

3. Content-based Filtering (Outlook)

7

Collaborative Filtering: Definition image from [1]

I Collaborative Filtering = Given a user u and item i ,
estimate a rating r(u, i) indicating the preference u for i

I There is no description of who the user is or what the item is!

I There are two general approaches: user-based collaborative
filtering vs. item-based collaborative filtering

user 3

user 2

user 1

user 5

user 4

item 1
item 2

item 3

item 4

8

The User-Item Matrix

I We stack all available ratings
into a matrix, the
user-item matrix

1 −1 1
1 −1 1 −1
1 −1

1 −1 1
1 1 −1



I The user-item matrix is usually extremely sparse!

I The user-item matrix usually has (a lot)
more rows than columns!

9

user →

↑ item

user 3

user 2

user 1

user 5

user 4

item 1
item 2

item 3

item 4

User-based Collaborative Filtering

I Approach: Similar to K-nearest neighbor classification:
find similar users and adopt their ratings!

I In the example: What users are most similar to user 5?
1 −1 1
1 −1 1 −1
1 −1

1 −1 1
1 1 −1


User Similarity Measures

10

User Similarity Measures (cont’d)

11

User-based Collaborative Filtering

I Back to rating: We want to compute a rating r(u, i)
indicating the preference of user u for item i

I We obtain a set of ’nearest neighbor’ users to u, U ′,
each u′ ∈ U ′ with a similarity sim(u, u′)

I We combine the nearest neighbor’s rankings using an
aggregation function:

12

User-based Collaborative Filtering: Rating

13

User-based CF: Do-it-Yourself

I Goal: Compute User 5’s
preference for item 2

I We use a neighborhood
of 2 neighbors

14

user 3

user 2

user 1

user 5

user 4

item 1
item 2

item 3

item 4

User-based CF: Do-it-Yourself

15

user 3

user 2

user 1

user 5

user 4

item 1
item 2

item 3

item 4

User-based CF: Discussion

Advantages

I simple, transparent

I It is relatively easy to estimate normalized ratings (keep in
mind that some users are more sceptical than others)

Disadvantages
I Calculating the similarity to other users is costly

I Keep in mind: There are a lot more users than items!
I User profiles change (in contrast to item profiles) more

frequently and drastically
I The model (the similarity matrix) must often be recalculated

I We face some of these problems with item-based approaches

16

Collaborative Filtering: Item-based

I Idea: Learn a similarity over items (not over users)

I there are fewer similarities to learn
(=less scalability issues, less overfitting)

I item-based models are more stable (fewer model updates)

Approach

I Learn an item-item matrix I ′ expressing the (rating-based)
relation between items

I Infer new ratings r(u, i) by combining I ′ with the user u’s
rating for other items

I We will have a look at a simple item-based model in the
following, the slope-one recommender!

17

The Slope-One Recommender

Slope-one: Basic Idea

I Basic idea: Let us assume that people on average rank
The Dark Knight a bit (0.3) higher than Batman Begins

I A user ranks Batman Begins with 3

I How would the user rank The Dark Knight? → 3 + 0.3 = 3.3

Let’s get a bit more complicated...

I Say there is another movie...

I ... Inception, which is rated on average 0.2 higher than
The Dark Knight

I The user has rated Inception with 5
I How would the user rank The Dark Knight now?

I according to Batman Begins: → 3 + 0.3 = 3.3
I according to Inception: → 5 - 0.2 = 4.8
I We simply average: r(u,The Dark Knight) := 3.3+4.8

2 = 4.05

18

Slope-One: Algorithmus

1 function slope one learn() :
2 For all pairs of items (i , j) :
3 U := all users who rated i and j
4 diff := 0
5 For all users u ∈ U:

6 diff := diff +
(

r(u, i)− r(u, j)
)

7 I′ij := diff /#U
8 return I′
9

1 function slope one apply(user u, item i , I′) :
2 diff := 0
3 J := The set of items that u has rated
4 for all items j ∈ J:

5 diff := diff +
(

r(u, j) + I′ij
)

6 return diff /#J
7

19

Slope-One: Do-it-Yourself

20

9 8 2
2 9 10
3 2 8 9
8 ? 1 ?

User 1
User 2
User 3
User 4

Lo
rd

 o
f t

he
 R

in
gs

Th
e

H
ob

bi
t

B
rid

ge
t J

on
es

' D
ia

ry

D
irt

y
D

an
ci

ng

Slope-One: Do-it-Yourself

21

9 8 2
2 9 10
3 2 8 9
8 ? 1 ?

User 1
User 2
User 3
User 4

Lo
rd

 o
f t

he
 R

in
gs

Th
e

H
ob

bi
t

B
rid

ge
t J

on
es

' D
ia

ry

D
irt

y
D

an
ci

ng

Slope-One: Discussion

Benefits
I Computationally (much) less demanding than user-based CF

(#items << #Users)

Drawbacks
I Not very user-specific! Slope-One asks: “Is Item X good?”,

not “Is Item X good for this user?”

22

Outline

1. Collaborative Filtering

2. Collaborative Filtering II: Matrix Factorization

3. Content-based Filtering (Outlook)

23

The NetFlix Price (2006-09)

I 1 Mio. $ price, announced by Netflix

I Target: Improve NetFlix’ in-house recommender,
CineMatch, by 10%

I Huge boost in recommender system research
(>40K teams from >180 countries)

I Data: 100 mio. ratings (* – *****), 480K(18K) users(movies)

I Only collaborative filtering allowed
(no background information on users/movies)

I Here: The approach that won the Netflix price [2]
(matrix factorization)

24

Matrix Factorization: Illustration image from [2]

25

Matrix Factorization: Motivation

Idea: Latent Factors
I We can describe movies

by different attributes / factors
I Does the movie contain violence?
I Is the movie black+white?
I Is the movie a love comedy?
I ...

I Users and movies are projected to a high-dimensional factor
space, whose dimensions correspond to these factors.

I The factors are not hand-designed but learned. Why?
I Manual definition of factors → high label effort
I Unclear what axes are important (feature selection)

Example

I Users X like “Terminator” and “Die Hard”

I Users Y dislike those movies, but they like “Pretty Woman”
and “Dirty Dancing”

26

Matrix Factorization: Example (Learned) image from [2]

27

Matrix Factorization

I Given: The user-item matrix R with ratings
(ratings are usually standardized and may thus be negative)

I Given: A number of latent factors, K , forming the
factor space RK (K → cross-validation)

I Every user u is assigned a position pu in factor space

I Every item i is assigned a position qi in factor space

I Given a user pu and item qi , u’s rating for i is estimated by
the scalar product:

r(u, i) := pu · qi

I “Learning” = estimating a position in factor space for each
user/item

28

Matrix Factorization: Skizze

Illustration

29

Matrix Factorization

I We can view the estimation of ratings as a matrix
multiplication (thus “matrix factorization”)

I We stack the user vectors pu as rows into a matrix P

I We stack the item vectors qi as rows into a matrix Q

I Goal: Estimate P and Q such that the estimated ratings
align ’well’ with the existing ratings:

R ≈ P · QT

Remarks

I Actually, we do not know the whole matrix R but only
a few ratings (= training set).

I We denote this training set with R.
It contains ratings (u, i , r).

30

Matrix Factorization: Derivation

Optimization

I We minimize the least squares loss:

arg min
P,Q

∑
(u,i ,r)∈R

(r − pT
u · qi)

2

I Usually, we regularize the problem with L2 regularization
(where |.| denotes a vector’s Euclidean norm)

arg min
P,Q

∑
(u,i ,r)∈R

(r − pT
u · qi)

2 + λ ·
(
|qu|2 + |qi |2

)

31

Matrix Factorization: Optimization

... Naive Optimization?

I For each user pu / item qi , we could set the partial derivatives
by pu1, pu2, ... and qi1, qi2, ... to zero.

I We would obtain a linear equation system
(note: the loss function is quadratic).

I But: The equation system would be huge
10K users, 1K items, 100 factors
→ 11K × 100 variables
→ 121 · 1010 matrix entries

Approach 1: Alternating Least-Squares
I We alternate the optimization for users and items

1. Step A: Fix item vectors, optimize user vectors
2. Step B: Fix user vectors, optimize item vectors

32

Matrix Factorization: Alternating Least-Squares

33

Matrix Factorization: Alternating Least-Squares

34

Matrix Factorization: Stochastic Gradient Descent

arg min
P,Q

∑
(u,i,r)∈R

(r − pT
u · qi)

2 + λ ·
(
|qu|2 + |qi |2

)
I Remember Stochastic Gradient Descent (SGD) ...?
I cmp. neural networks (and many other machine learning

methods): random selection of training samples,
optimization of these samples by a gradient descent step.

I Here: randomly pick a rating (u, i , r) from the training set
and optimize this rating:

arg min
P,Q

(r − pT
u · qi)

2 + λ ·
(
|qu|2 + |qi |2

)
1

2 function s t o c h a s t i c g r a d i e n t d e s c e n t (P0,Q0,R, λ, γ) :
3 do :
4 select one rating (u, i , r) from R
5 update pu ← pu − γ ·∆pu

6 update qi ← qi − γ ·∆qi

7 until convergence
8 35

SGD: Derivation

36

SGD: Derivation

37

Matrix Factorization: Pseudo-Code (final)

1

2 function s t o c h a s t i c g r a d i e n t d e s c e n t (P0,Q0,R, λ, ε) :
3 do :
4 select one rating (u, i , r) from R
5 update pu ← pu + γ · ((r − pu · qi)− λ · pu)
6 update qi ← qi + γ · ((r − pu · qi)− λ · qi)
7 until convergence
8

Adapting Matrix Factorization for Practical Use [2]

I synchronize user’s rating levels (pessimists vs. enthusiasts)

I model time dependency (users’ tastes change, hypes decay, ...)

I cold start problem (deal with users with few/no ratings)

“ To put these algorithms to use, we had to work to overcome some

limitations, for instance that they were built to handle 100 million ratings,

instead of the more than 5 billion that we have, and that they were not

built to adapt as members added more ratings. But [...] they are still used

as part of our recommendation engine. ”

(http://techblog.netflix.com, 2012)
38

Outline

1. Collaborative Filtering

2. Collaborative Filtering II: Matrix Factorization

3. Content-based Filtering (Outlook)

39

Content-based Filtering

Motivation

I Collaborative Filtering uses rating data only.
But: Is there more information around?

I Content-based filtering takes a description of items
into account!

Approach

I Describe each item by a feature vector

I Based on the features, infer a similarity between items

I This similarity is not based on rating information,
but on the item itself say, the genre of a song/book

I Example: Pandora Radio ... describes each song by 400
attributes derived from the music genome project

I Recommendation Strategy: Recommend items similar to
the ones the user prefers!

40

Content-based Filtering: Discussion

Advantages
I more robust in cold start situations

I new items / users
I users that rate not / seldom

I transparency (recommending ’similar’ items)

Disadvantages

I additional domain knowledge required

I item similarities are hard to compute (humor in Friends vs.
humor in Faulty Towers)

I no exploration!? (Prof. Ulges likes“Algorithms” and
“Song of Ice and Fire”)

41

Content-based Filtering: Hybrid Approaches

Hybrid Approaches combine collaborative filtering (CF)
and content-based filtering (CBF)

Example 1: Late Fusion

I Get separate ratings from CF and CBF and combine them
(say, by a weighted fusion)

Example 2: Collaborative Filtering with content-based Features

I Describe a user by a distribution of (content-based) features
(say, the songs he liked)

I Similar users are the ones with similar distributions.
Adopt their (collaborative) ratings.

Example 3: Combined Item Similarity

I Compute an item-item similarity on both the item’s content
and their ratings (items with similar ratings are more similar)

42

References
[1] An example of predicting of the user’s rating using collaborative filtering.

https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif (User: Moshanin, own work,
CC license, retrieved: Dec 2016).

[2] Y. Koren, R. Bell, and C. Volinsky.
Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30–37, 2009.

43

https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif

	Collaborative Filtering
	Collaborative Filtering II: Matrix Factorization
	Content-based Filtering (Outlook)

