Machine Learning
— winter term 2016/17 —

Chapter 12:
Recommender Syste

Prof. Adrian Ulges
Masters “Computer Science”
DCSM Department
RheinMain University of Applied Sciences

Recommender Systems: Examples

[ERPRTRT (vt for i | Imytan Gueise | 3 fuggestiaas Far You | Browse DYON

Cor et e S
LT E—

Tt
B i]

Ficommented Javed ot juos armtm
o ets The Ofics (25 | Vewss and 33 Rexh

Mad Men ::cr200 Senam 14
S0 13805 Dt Yor Gey T ALIC S4ne8 13000 3 CorS Asede 351

2ytrcy duong an e e catthvoot bo:
Vi¥q 1he cqurie 3

e A b A Yty e

See maveas masas

lost.fm music kiciol Events Linkedﬁ Jobs
Fa i) ot e Lo
Parker,
Check outthese jobis thal may inferest you:
At
Ditectot, Product Management

rap? move .
b Move, Inc. - 8an Francisco Bay Area sy,
Patares
vaseon Drector. Product Management

¥ Syrantec View Job »
i Symantec - San Francisco Bay Area
Trackn Director of Product Managemert. Motile Gatnes
trents . Pl Rado #an, Inc. - 3n Francisco Bay Ares
ews 2 .
Lstents Marcen S Radn. Uoves L Muves Lae dager it Director Pyeduct Managem: Mobile Catrlers iaw dob
e foba ek ki e S Ruckus Wireless - San Francisco Bay Area *
[- 192r¢0n §'3 2D 30 ITUM HAs CneRegaee
a teleasedDeUS on SextemIn 213010 3 Sce mere O
Toas Seazree F oz Dhrector of Produuct Ianagemeit - eCommerce
Unteners youstwoit YouSendHl- San Francisco Bay Area
feec
Josenat n
Share trs artist = See more jobs you may be Interested in >

rouen Ssers Wlwet 57

Recommender Systems

What are 'Recommenders’ ?

> Recommender systems suggest users potentially interesting
Items (movies, books, jobs, ...).

> From a machine learning perspective,
a recommender's goal is to predict user preference

> Given are a user and an item

> ... a product

.. a person or interest group (potential friends)
.. a piece of text/music/video

.. a line of code

vV v v Vv

Why Recommenders?

> Recommenders are a helpful alternative to (active) search:
They reveal options that users would not have searched for
by themselves (discovery).

Recommender Systems: Formalization

Recommenders: Setup?

> Do recommenders match any of the learning setups
we know so far? (classification? clustering? regression?)

> Novelty: There are two kinds of ’samples’ (users vs. items).
Recommending is about learning a connection between both.

Formalization: Basic Questions
» What information is available to describe users?

> the user identity

> past ratings (unary? binary? real-valued?)

> a user profile (demographics, gender, age, ...)?
> links to other users (friend relationships...)?

» What information is available to describe items?

> the object identity

> past ratings (unary? binary? real-valued?)

> a description of the item by text/features?

links to other items (e.g., books by the same author)?

v

Recommender Systems: Other (practical) Aspects

> Domain: What type of items are recommended?

> Input: How are ratings collected
(implicit vs. explicit feedback)?
> Business Purpose: Should the recommender ...keep people

interested (YouTube)? ...sell stuff (amazon)? ...build a
community (linkedin)?

> Personalization: Should recommendations be generic?
Should they match the user's demographic / long-term
interests / short-term activity (ketchup — burgers)?

> Privacy, Monetization, Trust: Should any personal
information be revealed? Are recommendations monetized?
Is there vulnerability to spam?

X%

Recommender-Algorithmen images from 21

In the following, we will have a look at some
common recommender algorithms:

> Association rule learning (/)
> user-based collaborative filtering ()
> item-based collaborative filtering (L)

> matrix factorization (\)

;
The Color Purple] Amadeus $~
! —
Lethal Weapon
Sense and
Geared Ocean's 11] | g Geared
| toward < e $ toward
| femles & males
s Ml
50 Dave
= The Lion King
Independencel |« =227
Diaries Da
98% of people who purchased items A and B f_s(‘;,pm
also purchased item C |

Outline

1. Collaborative Filtering

Collaborative Filtering: Definition image fom 1

> Collaborative Filtering = Given a user u and item /,
estimate a rating r(u, i) indicating the preference u for i

> There is no description of who the user is or what the item is!

> There are two general approaches: user-based collaborative
filtering vs. item-based collaborative filtering

[]
o L

Litem 1) / 2 N i.iﬁn@‘}
=) adl

1

The User-ltem Matrix

> We stack all available ratings
into a matrix, the
user-item matrix

1 -1 1
1 -1 1 -1
user — 1 —1
1 -1 1
1 1 -1
1 item

> The user-item matrix is usually extremely sparse!

> The user-item matrix usually has (a lot)
more rows than columns!

User-based Collaborative Filtering »*

> Approach: Similar to K-nearest neighbor classification:
find similar users and adopt their ratings!

> In the example: What users are most similar to user 57

1 -1 1
1 -1 1 -1
1 —1

1 -1 1
1 1 -1

User Similarity Meas% all ﬂw ﬂgf é*cﬂt wgers
rateo!
1) CorreloANo— W .

5—414] S WV!(MA/(/(?J):T—

T QU‘UC’?@ m/‘t“% of wio11z
$5,6- . ey of ralls I

|

10

P C . ﬁ' — ai&l
User Similarity Measures (cont'd) —| T

ot ~
2) Codiee Ui U 2 “Towe 1 f

| e L&%‘——I/M et
(“’U\.' \07 velues anve 0)

&u/\(_u“uZ) Cog %((u U

11

User-based Collaborative Filtering

> Back to rating: We want to compute a rating r(u, i)
indicating the preference of user u for item i

> We obtain a set of 'nearest neighbor’ users to u, U/,
each v’ € U’ with a similarity sim(u, u’)

> We combine the nearest neighbor’s rankings using an
aggregation function:

A = {u/ea/ / U raded e /Vf

A =
N Queagre: —ui) = — 2 rlu]
?ﬂj (2 #ﬂb@ ueZ(

12

User-based Collaborative Filtering: Rating

2) wagdted &u@roi»bj

%
=
,/’ —

r’((/{,;) L — —
Z Sl\tm(t(,-bz’} UIGZ("/
uell! :

WMt Ce f@@‘/{u 2

D rlug)- Siulu

13

User-based CF: Do-it-Yourself

> Goal: Compute User 5's
preference for item 2

> \We use a neighborhood
of 2 neighbors

14

User-based CF: Do-it-Yourself

o = PR o

15

User-based CF: Discussion *

Advantages
> simple, transparent

> It is relatively easy to estimate normalized ratings (keep in
mind that some users are more sceptical than others)

Disadvantages

> Calculating the similarity to other users is costly

> Keep in mind: There are a lot more users than items!

> User profiles change (in contrast to item profiles) more
frequently and drastically

> The model (the similarity matrix) must often be recalculated

> We face some of these problems with item-based approaches

16

Collaborative Filtering: ltem-based

> ldea: Learn a similarity over items (not over users)

> there are fewer similarities to learn
(=less scalability issues, less overfitting)

> item-based models are more stable (fewer model updates)

Approach

> Learn an item-item matrix Z’ expressing the (rating-based)
relation between items

> Infer new ratings r(u, i) by combining Z’ with the user u's
rating for other items

> We will have a look at a simple item-based model in the
following, the slope-one recommender!

17

The Slope-One Recommender

Slope-one: Basic ldea
> Basic idea: Let us assume that people on average rank
The_Dark_Knight a bit (0.3) higher than Batman_Begins
> A user ranks Batman_Begins with 3
» How would the user rank The_Dark_Knight? — 3 + 0.3 = 3.3

Let's get a bit more complicated...
> Say there is another movie...

> ... Inception, which is rated on average 0.2 higher than
The_Dark_Knight

> The user has rated Inception with 5
> How would the user rank The_Dark_Knight now?

> according to Batman_Begins: — 3 + 0.3 = 3.3
> according to Inception: —5-02=4.38
> We simply average: r(u, The_Dark_Knight) := % = 4.05

18

Slope-One: Algorithmus *

1 function slope_one_learn():

2 For all pairs of items (i,)):

3 U := all users who rated i/ and j

4 diff := 0

5 For all users u € U:

6 diff := diff + (r(u, i) — r(u, j))
7 T = diff |#U

8 return Z'

1 function slope_one_apply(user u, item i, Z'):
2 diff := 0
3 J := The set of items that v has rated
4 for all items j € J:
5 diff := diff + <r(u,j) +I;j)
6 return diff /#J
7
19
Slope-One: Do-it-Yourself *
N

/LL@‘T{Z] 4 = [[(/?—4— (/*}) 4—<— S’) +;_) - C/,.S\

BIP

20

Slope-One: Do-it-Yourself *

[o 5
$ 9
¢ ¢

SIS
Sads
SRS
User1 9 8 2
User2 2 9 10
User3 328 9
User4 8 21 ?
Slope-One: Discussion *

Benefits
> Computationally (much) less demanding than user-based CF

(#items << #Users)

Drawbacks

> Not very user-specific! Slope-One asks: “Is Item X good?”,
not “Is Item X good for this user?”

22

Outline ¥

2. Collaborative Filtering Il: Matrix Factorization

23

The NetFlix Price (2006-09) *

> 1 Mio. $ price, announced by Netflix

> Target: Improve NetFlix' in-house recommender,
CineMatch, by 10%

» Huge boost in recommender system research
(>40K teams from >180 countries)

> Data: 100 mio. ratings (* — *****) 480K (18K) users(movies)

> Only collaborative filtering allowed
(no background information on users/movies)

> Here: The approach that won the Netflix price [2]
(matrix factorization)

24

Matrix Factorization: lHlustration imsge from

Serious
Braveheart
The Color Purple Amadeus %
Lethal Weapon
Sense and
Geared Sensibility I Ocears 1] |7 . Geared
toward < Ao # » toward
females males
- The Lion King Durh and
] Dumber
The Princess Independence| | &=
Diaries Day N
v Gus
Escapist
25
Matrix Factorization: Motivation e 7
Idea: Latent Factors
» We can describe movies e] &

by different attributes / factors
» Does the movie contain violence?

Is the movie black+white?

Is the movie a love comedy?
> ...

>
>

> Users and movies are projected to a high-dimensional factor
space, whose dimensions correspond to these factors.

> The factors are not hand-designed but learned. Why?

» Manual definition of factors — high label effort
> Unclear what axes are important (feature selection)

Example
» Users X like “Terminator’ and “Die Hard”

> Users Y dislike those movies, but they like “Pretty Woman"
and “Dirty Dancing”

26

Matrix Factorization: Example (Learned) imsg from i *

15
&Q\ S
& o\ &
SR S S
& HFgE S
10 |- X & o
3 & & S »
.\\Q&(’\Q& > ¥ Q}§ é"'\gz,\ &
N & §* &
& ARON 9 (G
(o S N
05 Q{\\Q’ ¥ ® &
N & NG & S
& S &
) 5 S Sy g,Q\
< SRS &
~ N N\ ST
5 00 S N T
S SRS & 3
g S Q\ Q&Q §é
g = PR
= S QROR
05 - £ S
e S Lo
AR O NN
Tt @&b > N O
10 & N . SO R °
- B 3 D
1 \S@w
*‘b
i 1 I I |]
-1.5 -1.0 0.5 0.0 0.5 1.0
Factor vector 1 e
Matrix Factorization *

> Given: The user-item matrix R with ratings
(ratings are usually standardized and may thus be negative)

> Given: A number of latent factors, K, forming the
factor space RX (K — cross-validation)

> Every user u is assigned a position p, in factor space
> Every item / is assigned a position g; in factor space

> Given a user p, and item g;, u's rating for i is estimated by
the scalar product:

r(u,i) == py - qGi

> “Learning” = estimating a position in factor space for each
user/item

28

Matrix Factorization: Skizze

Illustration

29

Matrix Factorization

> We can view the estimation of ratings as a matrix
multiplication (thus “matrix factorization”)

> We stack the user vectors p, as rows into a matrix P

> We stack the item vectors g; as rows into a matrix @

> Goal: Estimate P and @ such that the estimated ratings
align 'well’ with the existing ratings:

R~P-QT

Remarks
> Actually, we do not know the whole matrix R but only
a few ratings (= training set).
> We denote this training set with R.
It contains ratings (u, i, r).

30

Matrix Factorization: Derivation

Optimization

> We minimize the least squares loss:

agmin >, (r—py @)
(u,i,r)éER

> Usually, we regularize the problem with L2 regularization
(where |.| denotes a vector’s Euclidean nor

: AT 32 , P2 |2
g ypin (z):ER (r—py - qi)"+ A (|ﬂu| +|q_:|>

31

Matrix Factorization: Optimization

... Naive Optimization?
> For each user p, / item q;, we could set the partial derivatives
by pu1, pu2, --- and gj1, gjz, ... to zero.

> We would obtain a linear equation system
(note: the loss function is quadratic).

> But: The equation system would be huge
10K users, 1K items, 100 factors

— 11K x 100 variables
— 121 - 10'° matrix entries

Approach 1: Alternating Least-Squares
> We alternate the optimization for users and items

1. Step A: Fix item vectors, optimize user vectors
2. Step B: Fix user vectors, optimize item vectors

32

Matrix Factorization: Alternating Least-Squares *
84-9,(/‘ A LCQQ({\ T‘Le,u,ug 1/_1)@/0@ /‘\1\ s 2e (L& ¢

/(u/’:") - .

g'(' A %r eockh W8er U, Solue G lexlL

Dwear WOM 7’?4““ "*PL;M% A
Step B For eadly e 7 Solue 0 el

Qh%%”?ﬁlmm

34

Matrix Factorization: Stochastic Gradient Descent »*

arg min r—pl-g)?+ X (lgu? + |gif?
gP’Q(u,%:en(po - aif + A (lauf* +1ail?)
> Remember Stochastic Gradient Descent (SGD) ...7
> cmp. neural networks (and many other machine learning
methods). random selection of training samples,
optimization of these samples by a gradient descent step.
> Here: randomly pick a rating (v, i, r) from the training set
and optimize this rating:

argmin (r—py - q:)* + - (Iqul2 + |q,-|2)

function stochastic_gradient_descent (Po,Qo,R,\,v):
do:
select one rating (u, i, r) from R
update p, < py — v - Apy
update gi < qi — v - Aqi
until convergence

0o ~N o o b~ W NN o=

35

SGD: Derivation *

36

SGD: Derivation

37

Matrix Factorization: Pseudo-Code (final)

function stochastic_gradient_descent (Pg,Qq,R,)\ ¢€):
do:
select one rating (u, i, r) from R
update py < pu+7v - ((r — pu- qi) — X pu)
update q; = q; +v - ((r — pu-qi) — X qj)
until convergence

0 N o 0B~ W N

Adapting Matrix Factorization for Practical Use [2]
> synchronize user's rating levels (pessimists vs. enthusiasts)

> model time dependency (users’ tastes change, hypes decay, ...)

> cold start problem (deal with users with few/no ratings)

“ To put these algorithms to use, we had to work to overcome some
limitations, for instance that they were built to handle 100 million ratings,
instead of the more than 5 billion that we have, and that they were not
built to adapt as members added more ratings. But [...] they are still used
as part of our recommendation engine. "

(http://techblog.netflix.com, 2012)

38

Outline

3. Content-based Filtering (Outlook)

39

Content-based Filtering

Motivation

> Collaborative Filtering uses rating data only.
But: Is there more information around?

> Content-based filtering takes a description of items
into account!

Approach
> Describe each item by a feature vector
> Based on the features, infer a similarity between items

> This similarity is not based on rating information,
but on the item itself say, the genre of a song/book

» Example: Pandora Radio ... describes each song by 400
attributes derived from the music genome project

» Recommendation Strategy: Recommend items similar to
the ones the user prefers!

40

ALGORITHMS

Content-based Filtering: Discussion

Advantages

> more robust in cold start situations

> new items / users
> users that rate not / seldom

> transparency (recommending 'similar’ items)

Disadvantages
> additional domain knowledge required

> item similarities are hard to compute (humor in Friends vs.
humor in Faulty Towers)

> no exploration!? (Prof. Ulges likes “Algorithms” and
“Song of Ice and Fire”)

41

Content-based Filtering: Hybrid Approaches *

Hybrid Approaches combine collaborative filtering (CF)
and content-based filtering (CBF)

Example 1: Late Fusion

> Get separate ratings from CF and CBF and combine them
(say, by a weighted fusion)

Example 2: Collaborative Filtering with content-based Features

> Describe a user by a distribution of (content-based) features
(say, the songs he liked)

» Similar users are the ones with similar distributions.
Adopt their (collaborative) ratings.

Example 3: Combined Item Similarity

> Compute an item-item similarity on both the item’s content
and their ratings (items with similar ratings are more similar)

42

References

[1] An example of predicting of the user’s rating using collaborative filtering.
https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif (User: Moshanin, own work,
CC license, retrieved: Dec 2016).

[2] Y. Koren, R. Bell, and C. Volinsky.
Matrix factorization techniques for recommender systems.
IEEE Computer, 42(8):30-37, 2009.

43

