

Machine Learning

- winter term 2016/17 -

Chapter 12: Recommender Systems

Prof. Adrian Ulges

Masters "Computer Science"

DCSM Department

RheinMain University of Applied Sciences

Recommender Systems: Examples

Recommender Systems

What are 'Recommenders'?

- ▶ Recommender systems suggest users potentially interesting Items (movies, books, jobs, ...).
- ► From a machine learning perspective, a recommender's goal is to predict **user preference**
- Given are a user and an item
 - ... a product
 - ... a person or interest group (potential friends)
 - ... a piece of text/music/video
 - ... a line of code
 - ▶ ...

Why Recommenders?

▶ Recommenders are a helpful alternative to (active) search: They reveal options that users would not have searched for by themselves (discovery).

Recommender Systems: Formalization

Recommenders: Setup?

- ▶ Do recommenders match any of the learning setups we know so far? (classification? clustering? regression?)
- ▶ Novelty: There are **two kinds of 'samples'** (users vs. items). Recommending is about learning a connection between both.

Formalization: Basic Questions

- ▶ What information is available to describe users?
 - ▶ the user identity
 - past ratings (unary? binary? real-valued?)
 - ▶ a user profile (demographics, gender, age, ...)?
 - ▶ links to other users (friend relationships...)?
- ▶ What information is available to describe items?
 - ▶ the object identity
 - past ratings (unary? binary? real-valued?)
 - a description of the item by text/features?
 - ▶ links to other items (e.g., books by the same author)?

Recommender Systems: Other (practical) Aspects

- ▶ **Domain**: What type of items are recommended?
- ► **Input**: How are ratings collected (implicit vs. explicit feedback)?
- ▶ Business Purpose: Should the recommender ...keep people interested (YouTube)? ...sell stuff (amazon)? ...build a community (linkedin)?
- ▶ **Personalization**: Should recommendations be generic? Should they match the user's demographic / long-term interests / short-term activity (ketchup → burgers)?
- ▶ Privacy, Monetization, Trust: Should any personal information be revealed? Are recommendations monetized? Is there vulnerability to spam?

Recommender-Algorithmen images from [2] [1]

*

In the following, we will have a look at some common recommender algorithms:

- ▶ Association rule learning (∠)
- ▶ user-based collaborative filtering ()
- ▶ item-based collaborative filtering ()
- ▶ matrix factorization ()

Outline

- 1. Collaborative Filtering
- 2. Collaborative Filtering II: Matrix Factorization
- 3. Content-based Filtering (Outlook)

Collaborative Filtering: Definition image from [1]

- ▶ Collaborative Filtering = Given a user u and item i, estimate a rating r(u, i) indicating the preference u for i
- ▶ There is no description of **who** the user is or **what** the item is!
- ► There are two general approaches: **user-based** collaborative filtering vs. **item-based** collaborative filtering

The User-Item Matrix

We stack all available ratings into a matrix, the user-item matrix

$$\text{user} \to \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & & -1 & \\ & 1 & -1 & 1 \\ 1 & & 1 & -1 \end{pmatrix} \\ \uparrow \text{ item}$$

- ▶ The user-item matrix is usually **extremely sparse!**
- ► The user-item matrix usually has (a lot) more rows than columns!

User-based Collaborative Filtering

- ▶ **Approach**: Similar to K-nearest neighbor classification: find similar users and adopt their ratings!
- ▶ In the example: What users are most similar to user 5?

$$egin{pmatrix} 1 & -1 & 1 & & \ 1 & -1 & 1 & -1 \ 1 & & -1 & 1 \ 1 & & 1 & -1 \end{pmatrix}$$

User Similarity Measures

1) Correlation $L = I_1 I_1$ Sim(U_1, U_2):= $L = I_1 I_2$ Solution $L = I_1 I_2$ Solution $L = I_1 I_2$ Solution

Soluti

User Similarity Measures (cont'd)

2) Cosine:
$$\vec{U}_{11}\vec{U}_{2}$$
: rows ich the user-iten matrix

(wissing values are 0)

Sim($\vec{u}_{11}\vec{u}_{2}$) = $\cos \pm (\vec{u}_{11}\vec{u}_{2}) = \frac{\vec{u}_{1}\vec{u}_{2}}{\|\vec{u}_{11}\| \cdot \|\vec{u}_{2}\|}$

11

User-based Collaborative Filtering

- ▶ Back to **rating**: We want to compute a **rating** r(u, i) indicating the preference of user u for item i
- ▶ We obtain a set of 'nearest neighbor' users to u, \mathcal{U}' , each $u' \in \mathcal{U}'$ with a similarity sim(u, u')
- We combine the nearest neighbor's rankings using an aggregation function:

User-based Collaborative Filtering: Rating

$$\Gamma(u_{ij}) := \frac{1}{\sum_{u' \in \mathcal{U}_{i}'} sim(u_{i}u')}$$

$$\Gamma(u_{ii}) := \frac{1}{\sum_{sim(u_{i}u')} \sum_{u'\in U_{i}} \sum_{sim(u_{i}u')} \frac{1}{u'\in U_{i}} \sum_{sim(u_{i}u')} \frac{1}{u'\in U_{i}}$$

$$= \frac{1}{\sum_{sim(u_{i}u')} \sum_{u'\in U_{i}} \frac{1}{u'\in U_{i}} \sum_{sim(u_{i}u')} \frac{1}{u'$$

User-based CF: Do-it-Yourself

- ▶ Goal: Compute User 5's preference for item 2
- ▶ We use a neighborhood of 2 neighbors

User-based CF: Do-it-Yourself

15

User-based CF: Discussion

Advantages

- simple, transparent
- ▶ It is relatively easy to estimate **normalized** ratings (keep in mind that some users are more sceptical than others)

Disadvantages

- Calculating the similarity to other users is costly
 - ▶ Keep in mind: There are a lot more users than items!
 - User profiles change (in contrast to item profiles) more frequently and drastically
 - ► The model (the similarity matrix) must often be recalculated
- ▶ We face some of these problems with *item-based approaches*

Collaborative Filtering: Item-based

- ▶ Idea: Learn a similarity over items (not over users)
- there are fewer similarities to learn (=less scalability issues, less overfitting)
- ▶ item-based models are more stable (fewer model updates)

Approach

- ▶ Learn an **item-item** matrix \mathcal{I}' expressing the (rating-based) relation between items
- ▶ Infer new ratings r(u, i) by combining \mathcal{I}' with the user u's rating for other items
- ▶ We will have a look at a simple item-based model in the following, the slope-one recommender!

The Slope-One Recommender

Slope-one: Basic Idea

- ▶ Basic idea: Let us assume that people on average rank The_Dark_Knight a bit (0.3) higher than Batman_Begins
- ► A user ranks Batman_Begins with 3
- ▶ How would the user rank The_Dark_Knight ? \rightarrow 3 + 0.3 = 3.3

Let's get a bit more complicated...

- ► Say there is **another movie**...
- … Inception, which is rated on average 0.2 higher than The_Dark_Knight
- ▶ The user has rated *Inception* with 5
- ► How would the user rank *The_Dark_Knight* now?
 - ▶ according to Batman_Begins: \rightarrow 3 + 0.3 = 3.3
 - ▶ according to *Inception*: \rightarrow 5 0.2 = 4.8
 - ▶ We simply average: $r(u, The_Dark_Knight) := \frac{3.3+4.8}{2} = 4.05$

Slope-One: Algorithmus

```
*
```

```
function slope_one_learn():
            For all pairs of items (i, j):
2
                  U := all users who rated i and j
3
                 diff := 0
4
                 For all users u \in U:
5
                         diff := diff + (r(u, i) - r(u, j))
6
                 \mathcal{I}'_{ij} := diff / \# U
7
            return \mathcal{I}'
8
9
    function slope_one_apply(user u, item i, \mathcal{I}'):
1
            diff := 0
2
            J := The set of items that u has rated
3
            for all items i \in J:
4
                 \mathsf{diff} := \mathsf{diff} + \left( r(u,j) + \mathcal{I}'_{ij} \right)
            return diff /#J
7
```

Slope-One: Do-it-Yourself

$$I_{LOTR,MA} = \frac{1}{4}(7+(-7)+(-5)+7) = 0.5$$
BUD

$$T = \begin{bmatrix} 0 & 1 & 0.5 & -7 & LOTR \\ -1 & 0 & 0 & -7 & TH \\ \hline -0.5 & 0 & 0 & -1 & BJ \\ 7 & 1 & 0 & DD \\ LOTR & TH & BJ & DD \end{bmatrix}$$

South of the Color of the Child South of the Child

User 2 2 9 10 User 3 3 2 8 9 User 4 8 ? 1 ?

User 1

Slope-One: Do-it-Yourself

$$\Gamma(u_{4}, TH) = \frac{1}{2} [(8 + (-1)) + (1 + 0)]$$

$$= 4$$

10

User 4 8 ? 1

Slope-One: Discussion

Benefits

 Computationally (much) less demanding than user-based CF (#items << #Users)

Drawbacks

▶ Not very user-specific! Slope-One asks: "Is Item X good?", not "Is Item X good for this user?"

Outline

- 1. Collaborative Filtering
- 2. Collaborative Filtering II: Matrix Factorization
- 3. Content-based Filtering (Outlook)

23

The NetFlix Price (2006-09)

- ▶ 1 Mio. \$ price, announced by Netflix
- ► Target: Improve NetFlix' in-house recommender, CineMatch, by 10%
- ► Huge **boost** in recommender system research (>40K teams from >180 countries)
- ▶ **Data**: 100 mio. ratings (* *****), 480K(18K) users(movies)
- Only collaborative filtering allowed (no background information on users/movies)
- ► Here: The approach that won the Netflix price [2] (matrix factorization)

Matrix Factorization: Illustration image from [2]

Matrix Factorization: Motivation

Idea: Latent Factors

- We can describe movies by different attributes / factors
 - ▶ Does the movie contain violence?
 - ▶ Is the movie black+white?
 - ▶ Is the movie a love comedy?
 - ▶ ...

- Users <u>and</u> movies are projected to a high-dimensional factor space, whose dimensions correspond to these factors.
- ▶ The factors are not hand-designed but learned. Why?
 - lacktriangle Manual definition of factors ightarrow high label effort
 - Unclear what axes are important (feature selection)

Example

- ▶ Users X like "Terminator" and "Die Hard"
- Users Y dislike those movies, but they like "Pretty Woman" and "Dirty Dancing"

26

25

Matrix Factorization: Example (Learned) image from [2]

Matrix Factorization

- Given: The user-item matrix R with ratings
 (ratings are usually standardized and may thus be negative)
- ▶ Given: A number of latent factors, K, forming the factor space \mathbb{R}^K ($K \to cross\text{-}validation$)
- ightharpoonup Every **user** u is assigned a **position** p_u in factor space
- \triangleright Every **item** *i* is assigned a **position** q_i in factor space
- ▶ Given a user p_u and item q_i , u's rating for i is estimated by the scalar product:

$$r(u,i) := p_u \cdot q_i$$

"Learning" = estimating a position in factor space for each user/item

Matrix Factorization: Skizze

Illustration

29

Matrix Factorization

- We can view the estimation of ratings as a matrix multiplication (thus "matrix factorization")
- ightharpoonup We stack the **user vectors** p_u as rows into a matrix P
- \blacktriangleright We stack the **item vectors** q_i as rows into a matrix Q
- ▶ **Goal**: Estimate *P* and *Q* such that the estimated ratings align 'well' with the existing ratings:

$$R \approx P \cdot Q^T$$

Remarks

- ► Actually, we do not know the **whole matrix** *R* but only a **few ratings** (= training set).
- We denote this training set with \mathcal{R} . It contains ratings (u, i, r).

Matrix Factorization: Derivation

Optimization

▶ We minimize the **least squares** loss:

$$\arg\min_{P,Q} \sum_{(u,i,r)\in\mathcal{R}} (r - p_u^T \cdot q_i)^2$$

▶ Usually, we **regularize** the problem with L2 regularization (where |. | denotes a vector's Euclidean norm)

$$\arg\min_{P,Q} \sum_{(u,i,r)\in\mathcal{R}} \frac{(r-p_u^T\cdot q_i)^2 + \lambda \cdot \left(|P_{q_u}|^2 + |q_i|^2\right)}{(u,i,r)\in\mathcal{R}}$$

Matrix Factorization: Optimization

... Naive Optimization?

- ▶ For each user p_u / item q_i , we could set the partial derivatives by $p_{u1}, p_{u2}, ...$ and $q_{i1}, q_{i2}, ...$ to zero.
- We would obtain a linear equation system (note: the loss function is quadratic).
- ▶ But: The equation system would be **huge** 10K users, 1K items, 100 factors
 - ightarrow 11K imes 100 variables
 - $ightarrow 121 \cdot 10^{10}$ matrix entries

Approach 1: Alternating Least-Squares

- ▶ We alternate the optimization for users and items
 - 1. Step A: Fix item vectors, optimize user vectors
 - 2. Step B: Fix user vectors, optimize item vectors

Matrix Factorization: Alternating Least-Squares Step A: Keep items fited, optimize users We look at a Single user's ratings: L(u) = [(r - Pun qin + ... + Puk qik) Pugi + D. [Pun + Pinz+...+ Puk + qin + qiz+ ... + qik $\frac{\partial L(u)}{\partial p_{un}} = \sum_{(u,i,r)} 2 \cdot (r - p_{u} \cdot q_{i}) \cdot (-q_{in}) + \lambda \cdot 2 \cdot p_{un} = 0$ 11 . (-Gik) " Puk Matrix Factorization: Alternating Least-Squares KxK luear equation System! (e.g. 100 × 100) For each user u, solve a KXK linear equation system -> Pu

Step B: For each iten i, solve a kxk lin. eq. systen -> qi new

Matrix Factorization: Stochastic Gradient Descent

$$\arg\min_{P,Q} \sum_{(u,i,r)\in\mathcal{R}} (r - p_u^T \cdot q_i)^2 + \lambda \cdot \left(|q_u|^2 + |q_i|^2 \right)$$

- ► Remember Stochastic Gradient Descent (SGD) ...?
- cmp. neural networks (and many other machine learning methods): random selection of training samples, optimization of these samples by a gradient descent step.
- ▶ Here: **randomly pick a rating** (u, i, r) from the training set and optimize **this** rating:

$$\arg\min_{P,Q} (r - p_u^T \cdot q_i)^2 + \lambda \cdot (|q_u|^2 + |q_i|^2)$$

```
function stochastic_gradient_descent (P_0, Q_0, R, \lambda, \gamma):
do:
select one rating (u, i, r) from R
update p_u \leftarrow p_u - \gamma \cdot \Delta p_u
update q_i \leftarrow q_i - \gamma \cdot \Delta q_i
until convergence
```

35

SGD: Derivation

SGD: Derivation

31

Matrix Factorization: Pseudo-Code (final)


```
function stochastic_gradient_descent (P_0, Q_0, R, \lambda, \epsilon):
do:
select one rating (u, i, r) from R
update p_u \leftarrow p_u + \gamma \cdot ((r - p_u \cdot q_i) - \lambda \cdot p_u)
update q_i \leftarrow q_i + \gamma \cdot ((r - p_u \cdot q_i) - \lambda \cdot q_i)
until convergence
```

Adapting Matrix Factorization for Practical Use [2]

- synchronize user's rating levels (pessimists vs. enthusiasts)
- ▶ model time dependency (users' tastes change, hypes decay, ...)
- cold start problem (deal with users with few/no ratings)

"To put these algorithms to use, we had to work to overcome some limitations, for instance that they were built to handle 100 million ratings, instead of the more than 5 billion that we have, and that they were not built to adapt as members added more ratings. But [...] they are still used as part of our recommendation engine."

(http://techblog.netflix.com, 2012)

Outline

- 1. Collaborative Filtering
- 2. Collaborative Filtering II: Matrix Factorization
- 3. Content-based Filtering (Outlook)

9.

Content-based Filtering

Motivation

- ► Collaborative Filtering uses **rating data only**.

 But: Is there more information around?
- Content-based filtering takes a description of items into account!

Approach

- ▶ Describe each item by a **feature vector**
- ▶ Based on the features, infer a similarity between items
- ► This similarity is <u>not</u> based on rating information, but on the item itself say, the genre of a song/book
- ► Example: Pandora Radio ... describes each song by 400 attributes derived from the music genome project
- ▶ **Recommendation Strategy**: Recommend items similar to the ones the user prefers!

Content-based Filtering: Discussion

Advantages

- more robust in cold start situations
 - new items / users
 - users that rate not / seldom
- transparency (recommending 'similar' items)

Disadvantages

- additional domain knowledge required
- item similarities are hard to compute (humor in Friends vs. humor in Faulty Towers)
- ▶ no exploration!? (Prof. Ulges likes "Algorithms" <u>and</u> "Song of Ice and Fire")

Content-based Filtering: Hybrid Approaches

Hybrid Approaches combine collaborative filtering (CF) and content-based filtering (CBF)

Example 1: Late Fusion

 Get separate ratings from CF and CBF and combine them (say, by a weighted fusion)

Example 2: Collaborative Filtering with content-based Features

- Describe a user by a distribution of (content-based) features (say, the songs he liked)
- Similar users are the ones with similar distributions. Adopt their (collaborative) ratings.

Example 3: Combined Item Similarity

► Compute an item-item similarity on both the item's content and their ratings (items with similar ratings are more similar)

41

References

- [1] An example of predicting of the user's rating using collaborative filtering. https://commons.wikimedia.org/wiki/File:Collaborative_filtering.gif (User: Moshanin, own work, CC license, retrieved: Dec 2016).
- [2] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer, 42(8):30–37, 2009.

43