University of Applied Sciences RheinMain Prof. Dr. Adrian Ulges

Machine Learning

Course Work 1

to complete by: 27.10.2016

Please execute this course work (as well as any following) in teams of two.

Exercise 1.1 (Review: Theory)

Review the following concepts, or get familiar with them (in case they are new to you):

- a) **Calculus** partial derivatives, the chain rule, gradient descent
- b) **Descriptive Statistics**

expectation value, variance, covariance, correlation

- c) Probability Theory
 probability density functions, the law of total probability, Bayes' Rule, conditional probabilities, statistical independence
- d) **Parameter Estimation** maximum-likelihood (ML)
- e) Linear Algebra

hyperplane representations (incl. the Hessian normal form), eigenvectors and -values, rotation matrices, matrix transposing and inversion, matrix multiplication.

Exercise 1.2 (Review: Python)

In case you are new to Python: Start getting familiar with it. The course homepage has some nice **links** to get you started. *Remark: Version 2.7 is pre-installed on the pool machines (including numpy, sklearn, matplotlib, and pandas).*

Exercise 1.3 (Review: Numpy, Pandas)

Before starting with hands-on work, have a look at Numpy and Pandas:

- The Numpy Quickstart Tutorial: https://docs.scipy.org/doc/numpy-dev/user/quickstart.html
- The '10 Minutes to Pandas': http://pandas.pydata.org/pandas-docs/stable/10min.html

Exercise 1.4 (The Titanic)

A nice (though a bit morbid) beginner ML problem is the "Titanic": Given some data about the Titanic's passangers (like age, gender, or passenger class), predict who survived the disaster.

- Go to kaggle.com (*a website for machine learning competitions*) and search for the "Titanic" competition. Enroll for the competition and download the files train.csv and test.csv.
- Download classifier_simple.py from the course website and run the classifer. Check the code thoroughly (particularly, what does map() do?). Submit your result to Kaggle and check your accuracy score.
- Get creative: Inspect the data and hand-craft your own decision rule for survival prediction. Your rule should involve at least <u>three</u> features. *Hints:* (1) You might find pandas' pivot_table() useful to check which features are promising. (2) Think about turning numerical features into categorial ones by thresholding: For example, split people into 'children' and 'grown-ups' by age.
- Submit your result to Kaggle and get your accuracy checked. Did you improve?

Exercise 1.5 (Your Titanic Machine Learner \heartsuit)

Train your own decision tree classifier for the Titanic problem, using sklearn.

- Check out *sklearn*'s class DecisionTreeClassifier: http://scikit-learn.org/stable/modules/generated/sklearn.tree. DecisionTreeClassifier.html
- Train your decision tree on train.csv and predict the survival rate on test.csv. Leave all parameters unchanged. *Remarks: (1) You may drop features that you obviously don't find useful (like the name). (2) sklearn's DecisionTreeClassifier only accepts numerical inputs (no strings like 'male'). Check out pandas' get_dummies() to turn categorial features into numerical ones.*
- For those familiar with Python: Optimize the max_depth parameter. Test the values 1,2,3,4 and 5 and run a 5-cross-validation on train.csv (with sklearn's cross_val_score () method, that is really simple).
- Submit your result to Kaggle and get your accuracy checked. Did you improve?

Exercise 1.6 (Report)

Put together a presentation of 2-3 slides, summarizing your hand-crafted model, your evaluation results on kaggle, and any open questions.