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Please execute this course work (as well as any following) in teams of two.

Exercise 3.1 (Expectation Maximization)
Implement Expectation Maximization for Gaussian Mixture Models as introduced in the lecture.
Implement the method yourself, do not use a ready-made implementation.

• Load EM.zip from the course homepage and run EM.py. This should give you a plot of
some 2D test data and then raise a NotImplementedError.

• Implement the train()-method in the class ExpectationMaximization. Use dia-
gonal covariance matrices (see np.diag()), i.e. set the covariances to 0 but learn each
cluster’s variances. Keep a uniform prior P (c) for the clusters (i.e., do not learn the pri-
or). Initialize the cluster’s means with random samples from the input data (see random.
sample()), and the variances with the whole dataset’s variance.

• Avoid loops. Use Numpy’s array operations instead. This makes your code more readable
and (a lot) more efficient. As an example: Here is some bad (left) and good (right) code that
standardizes the columns of an n×m data matrix X .

def s t a n d a r d i z e b a d (X ) :
n ,m = X. shape
f o r c o l in range (m) :

# compute mean
mean = 0 .
f o r row in range ( n ) :

mean += X[ row , c o l ]
mean = mean / n
# compute s t d . d e v i a t i o n
v a r = 0 .
f o r row in range ( n ) :

v a r += (X[ row , c o l ]−mean )∗∗2
s t d = s q r t ( v a r / n )
# s t a n d a r d i z e
f o r row in range ( n ) :

X[ row , c o l ] = (X[ row , c o l ]−mean ) / s t d
re turn X

def s t a n d a r d i z e g o o d (X ) :
means = X. mean ( a x i s =0)
s t d s = X. s t d ( a x i s =0)
re turn (X−means ) / s t d s
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• Use scipy.stats.multivariate normal to compute the multivariate
normal density.

• Test your code with the small 3-cluster dataset from generate test data().
Run plot() after each iteration and illustrate the progress of your clustering.

• Simply run your EM for 100 iterations (think about a better stopping criterion, though).

Exercise 3.2 (Multiple Restarts)
Implement a method quality(model, X) that measures how well your model fits your data
X . Restart your clustering multiple times (each time initializing with different random means) and
keep only the best result.

Exercise 3.3 (Keyframe Extraction)
Given a video sequence, we want to extract a few keyframes that represent the video ’as well as
possible’. For example, have a look at the “Game of Thrones” scene in got.mp4: We would
clearly expect 3 keyframes here, one showing Sansa, one showing Jon, one showing the total.
Obviously, we could solve the problem by clustering the video’s frames and picking one represen-
tative frame per cluster. Implement a class KeyframeExtractor following this idea:

• Read an input video’s frames using OpenCV (cv2.VideoCapture). For speedup rea-
sons, only use every q’th frame (make q a free parameter).

• Represent each frame by its (8× 8× 8) color histogram (see cv2.calcHist()).

• Collect all color histograms and reduce them to P dimensions by PCA (using sklearn’s
PCA class). Use P = 2 (you can also run tests with P > 2 and check if you get better
results).

• Run EM clustering on the P -dimensional ’frame features’. Visualize the features and your
learned EM model (you can simly call plot()).

• For each cluster k, write out the keyframe x that matches the cluster best (the one that
maximizizes p(x|µk,Σk)).

• Test your results for the videos got.mp4 (with 3 keyframes), 99.mp4 (with 6 keyframes),
and lwt.mp4 (with 5 keyframes). Do you obtain reasonable results?

Exercise 3.4 (Sources)
Check-in an up-to-date version of your project by Wed, 16th, 16:00.

Exercise 3.5 (Report)
Put together a presentation of 2-3 slides, showing your keyframes, visualizations, status, and any
open questions.
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