

Machine Learning WS 16/17 Abschlusspräsentation Projekt: <wikification>

Alexander Haas & Sven Bodemer

Hochschule RheinMain Dozent: Prof. Ulges

🖶 | Gliederung

- Datengrundlage
- Wikification Ansatz
 - o Technologien
 - o Architektur
- Evaluation
- Fazit
- Ausblick

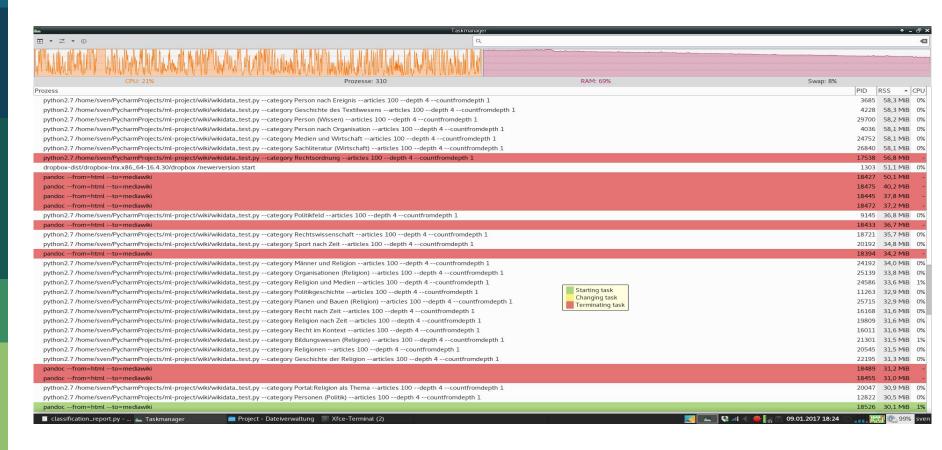
Datengrundlage

- Eingabe: unbekannter Text
- Ausgabe: Kategorie
- Crawling der 8 Hauptkategorien + Subkategorien (1 Mio. Artikel!)
- Normalisierung der Daten
 - o NLTK-Stopwords, Snowball-Stemmer, Tokenizer, PyPandoc, RegExp
- Crawling + Normalisierung in einem Schritt (~15 h !)

Datengrundlage

- Artikel wurden von HTML → Wiki-Markup umgewandelt und im Dateisystem gespeichert
 - Keine Datenbank, kein Server!
 - o Kategorien □ Ordner
 - o Artikel □ Dateien (z.B. algorithmus.wiki)
- Warum? → "rapid prototyping"
- Vorteil: erleichterte Fehlersuche, übersichtlicher

Systemauslastung während des Crawlings



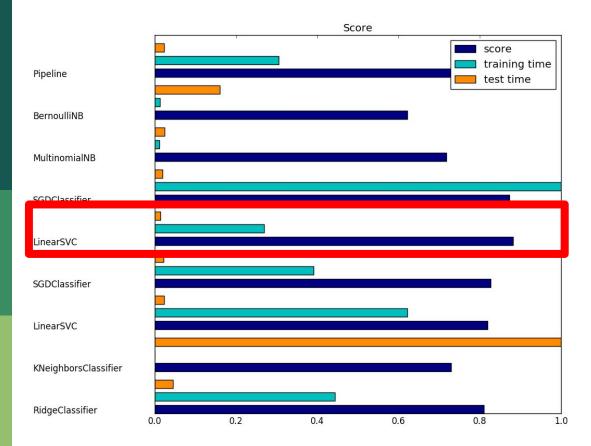
Wikification-Ansatz

Die Daten sind gesammelt, aber wie geht es jetzt weiter?

Unser Wikification-Ansatz

Klassifikation nach Kategorie Welche Kategorie hat ein Text? 01 Link-Detektor 02 Was wird verlinkt, und was nicht? Link-Unterscheidung
Eindeutige/Mehrdeutige Links Disambiguation 04 Commonness & Relatedness Dashboard Eingabe von neuen Texten, Visualisierung der Verlinkungen

👀 | 01 - Klassifikation n. Kategorie



- Evaluation, welcher Klassifikator für unsere Problemstellung am Besten geeignet ist
- SVM (LinearSVC) bestes "scoring" im Verhältnis zur Trainingszeit

VA VA

ui - Kiassiiikation n.

Vatogorio

- Eingabe: neuer, unbekannter Text
- Ausgabe: Kategorie
- Text-Klassifikator für Kategorien
 - TfidfVectorizer + LinearSVC (sklearn)
 - o 60% Training, 40% Test
 - o One-Vs-Rest

○ 02 - Link-Detektor

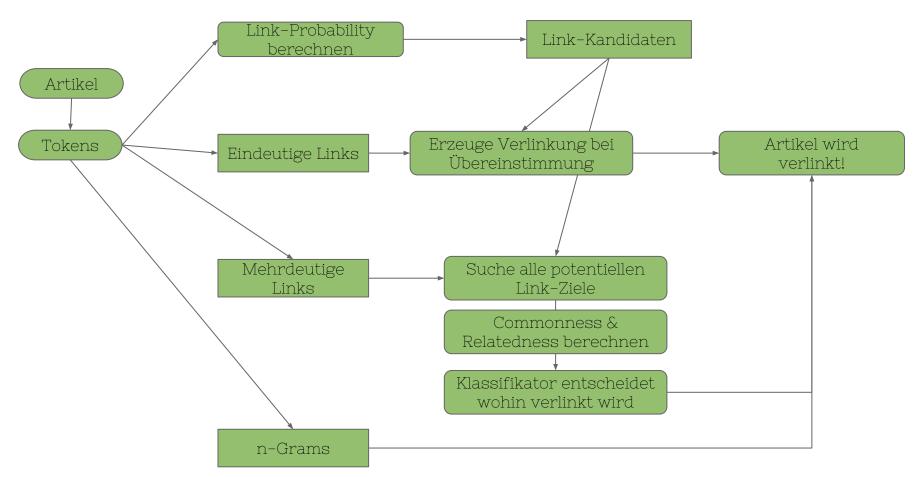
$$LP = \frac{\text{\#Links von t in Wiki}}{\text{\#Vorkommen von t in Wiki}} \approx \frac{API-Call(\text{\#Vorkommen von t})}{C*\text{\#Vorkommen in Freq.-Liste}} \geq T$$

- LP 🗆 Link Probability
- Basis: "Word-Frequency-List" (700k Wörter) & API
 - Freie Parameter: [C = 2.25, T = 0.5]
 - o Bsp. t = 'tolkien'
 - o API-Call(#t) = 34
 - o #t in Freq.-List = 4
 - o $34/(2.25*4) \square 3.77 > T$

103 - Link-Unterscheidung

- Je nach Link-Typ wird unterschiedlich erkannt:
 - Eindeutige Links (z.B. Informatik)
 - Mehrdeutige Links (z.B. Baum)
 - N-grams: Link aus mehreren Worten
- N-grams: idR. eindeutig und wichtig, sodass immer verlinkt wird
- Eindeutige Links: Fast jedes Wort ist ein möglicher Kandidat. Je nach Link-Probability wird über Verlinkung entschieden.

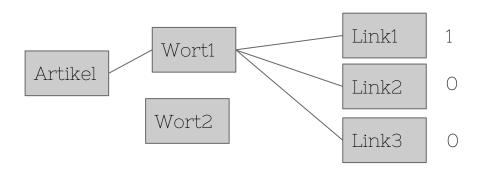
Link-Unterscheidung, aber wie!?



😘 04 - Disambiguation

- 1. Mehrdeutige Links: Ein Wort kann auf mehrere unterschiedliche Artikel verwiesen werden
- 2. Commonness: zählen der Backlinks aller Link-Kandidaten
- 3. Relatedness:
 - Links: Alle eindeutigen Links des Eingabe-Textes und Ziel-Artikel werden verglichen.
 - b. Text: Alle Worte beider Texte werden verglichen.
 - Klassifikation: Eingangstext und Ziel-Artikel werden von 8 Klassifikatoren bewertet.

€ 04 - Disambiguation



	Commonness	Relatedness Links	Relatedness Text	Classifier (1) Wissen	 Classifier (8) Sport	Label
Wort 1 (train)	backlinks(Link 1) / backlinks(all links)	Artikel n Link1	Artikel ೧ Link1	Artikel – Link1	 Artikel – Link1	1 or 0

🕬 04 - Disambiguation

	Commonness	Relatedness Links	Relatedness Text	Classifier (1) Wissen	 Classifier (8) Sport	Label
Wort 1 (train)	backlinks(Link 1) / backlinks(all links)	Artikel n Link1	Artikel n Link1	Artikel – Link1	 Artikel – Link1	1 or 0
Wort n (detect)	Backlinks (link1) / (link 1+2+3)	Text ∩ Link1	Text n Link1	Text – Link1	 Text - Link1	Decision by Link classifier

Evaluation

Wie gut konnte unser System eine Verlinkung erzeugen?

Evaluation

- 77% der Artikel werden richtig klassifiziert
- 54% der Links 'matchen'
- 78% der Links wurden korrekt Disambiguiert (kl. Datensatz 10 Artikel!)
 - Wikipedia-API hat disambiguation erleichtert/eingeschränkt

Fazit & Ausblick

Wie verlief die Entwicklung dieses Systems? Was sind die Stärken und Schwächen? Welche offenen Punkte gibt es noch?

Lessons learned

- Unerwartet viele Unicode-Probleme
- Bei großen Datenmengen von Anfang an Laufzeit betrachten
- Von Anfang an klare Strukturen: Config mit allen relevanten Pfaden
- Training von anfänglich 580 Klassifikatoren für die Kategorisierung :(
- Parallelisierung des "Crawling" (500k in ~15h)
- API-Calls immer noch sehr teuer

M Ausblick

- API-Calls kosten zu viel Zeit
 - Auf Web-Requests sollte komplett verzichtet werden
 - o Datenbank wäre die bessere Design-Entscheidung gewesen
- Tests waren meist auf kleinen Artikeln, da große zu viel Zeit gekostet hätten

Live-Demo

