Wi · cc · i · fh · y

Christian Caspers, Felix Hamann

Information Retrieval & Link Detection

What do we need

A disambiguator and a link detector

- Training is based on a combination of the link structure and wikitext
- Samples are page titles of wikipedia articles
- For training we need a model of wikipedia's link structure
- Ambiguities as defined by anchor text
- Counts for mentions of articles from other articles

Goals for information retrieval

- Necessary metrics for building training/test data should be stored in memory
- Random access to the text of all wikipedia articles
- Problem: Size and amount of the data

Welcome to Wikipedia,

the free encyclopedia that anyone can edit. 5,342,295 articles in English

enwiki dump progress on 20161201 This is the Wikimedia dump service. Please read the <u>copyrights</u> information. See <u>Meta:Data dumps</u> for documentation on the provided data formats. See <u>all databases list</u>. Last dumped on 2016-11-20 Dump complete Verify downloaded files against the (md5), (sha1) checksums to check for corrupted files. 2016-12-03 10:13:16 done Articles, templates, media/file descriptions, and primary meta-pages, in multiple bz2 streams, 100 pages per stream <u>enwiki-20161201-pages-articles-multistream.xml.bz2</u> 13.4 GB <u>enwiki-20161201-pages-articles-multistream.index.txt.bz2</u> 178.2 MB

How to handle the data

- It is not possible to extract all required data at once
- Incremental improvement of our data set

Used databases

- Redis as in-memory data structure server for metrics
 - Really, really fast (access via loopback interface)
 - Proven python client: redis-py
 - Offers all data structures we need: sets, counter and key-value mapping
 - Transactional operations important for testing and bug-fixing
 - Can become the bottleneck when accessing data with many clients
 - Concurrent access when spawning multiple processes
- Postgresql as database for wikitext
 - Random access via page title if armed with an index
 - Proven python client: psycopg2
 - In our case really easy to access (no complicated schema)

Stage I - Parsing Wikipedia

- Flat XML of 17092650 page elements
- 56G in size cannot reside in memory
- No random access of elements
- Splitting the data is not easy
 - Pages are not uniformly distributed
 - No structural information easily obtainable

Our approach:

- Several processes crawl concurrently
- Each process parses its range

I'M WORKING THA	NK YOU VERY MUCH	
		[worker] 10 pars processed: 177900 end: 12534610 searched: 11395100 begin: 11395100

Stage I - Results

Postgres is populated and there's no need to touch it anymore

Redis built the initial index structure

- Sets for senses, redirects and categories
- A queue of senses for worker pools
- Lookup table for redirects
- In total we imported
 - o 5.289.723 senses
 - o 7.273.736 redirects
 - 1.492.879 categories

Stage II - Extracting metrics

- We need backlink sets and mentioning counts
- All ambiguous terms must be extracted
- Should not take ages to do so: worker pool
- For keeping a somewhat sane memory footprint: 3-grams

Redis is suited well to incrementally improve data quality - dump.rdb

- 1. Extract links and ambiguous terms [[title|target]]
- 2. Merge redirects and ambiguities
- 3. Count mentions

Stage II - The extraction pipeline

Stage III - Required features

- Disambiguator
 - Commonness (cardinality of backlink sets per ambiguity)
 - Relatedness (normalized ratio of backlink sets)
 - Context Quality (sum of all averages between relatedness and link probability)
- Link Detector
 - Two link probabilities (average and maximum)
 - Two relatedness measures (per term and the average)
 - Confidence of the disambiguator (average and maximum)
 - Generality
 - Location and Spread

Stage III - Training the classifiers

- Unfortunately not much data to show we stick close to the paper
- Pages are extracted randomly with a link count threshold (100)
- Training and test data is available for download (50, 100, 500) pages
 - ~14k samples per 100 pages
 - all necessary metrics are computed
- The disambiguator performs good: ~93% accuracy
 - sklearn's c4.5 implementation
 - maximum tree height set to 5 performed best
 - changing minimum counts for leaves did not change much
 - confidence lies around 90%
- The link detector is implemented, but with a bug in the algorithm
 - so all data presented would be a lie

What went well

- Using redis as volatile data storage
 - incremental dumps
 - live inspection
- Extracting data with worker pools
- Calculating the metrics for the training data
- We have a consistent model of the whole wikipedia

What did not

- Redis becomes a bottleneck when doing many requests (even with pipelining)
- Implementing the data extraction took too long
- Lots of unnecessary data from mediawiki text (parsing is so slow)

General

- We are case-insensitive wikipedia is not
- Memory leaks kill, copy-on-write only really works for immutable types
- Premature optimization is the root of all evil

127.0.0.1:6379> SCARD 'l:donald trump' (integer) 1740 127.0.0.1:6379> GET 'm:donald trump' "3610" 127.0.0.1:6379> SCARD 'l:adolf hitler' (integer) 5435 127.0.0.1:6379> GET 'm:adolf hitler' "13041" 127.0.0.1:6379> SMEMBERS 'a:donald trump' 1) "donald trump" 2) "donald trump (song)" 127.0.0.1:6379> SMEMBERS 'a:adolf hitler' (empty list or set) 127.0.0.1:6379>

Text Categorization

Wikipedia Categories

- categories have
 - multiple parents
 - multiple children
- (probably) acyclic graph
- categories and articles reference parent categories
- Main topic classifications
 - kind-of root-category
 - 17 subcategories
 - only few directly associated articles

Building a Corpus for Classification I

- assign articles to categories
 - need to reverse relations
 - happens during data-import
- get enough articles
- no article exists in only one category
- depth creates overlap
 - the deeper the article within
 Wikipedia's structure, the more main topics are associated with it
- overlap creates noise
- multiclass, multilabel

corpus wanted

- 17 main categories
- 10,000 samples/category
- max 3 categories per article
- theoretically 170.000 samples
 - ~3% of all articles

Building a Corpus for Classification II

- iterate persisted graph
- for each main category
 - search breadth first for articles
 - memorize visited categories
 - memorize articles
 - loop over subcategories
- stop criteria
 - o depth
 - number of articles per category
 - no subcategories left
- remove articles with > 3 categories
- create split 75:25
- remove overlap from training
- remove wiki markup

- Results
 - wanted 17 * 10.000 articles
 - received only 20.000 articles
 - Train: 14041
 - Test: 6442
- numbers vary slightly for each run due to redis' set operations

Corpus Issues I - Overlap and Balance

• search 10K articles, depth 10

Corpus	
TOTAL 170000	
UNIQUE 27004	
Name	Count
arts	10000
games	10000
geography	10000
health	10000
history	10000
industry	10000
law	10000
life	10000
mathematics	10000
matter	10000
nature	10000
people	10000
philosophy	10000
reference works	10000
religion	10000
science and technology	10000
society	10000

- pruned corpus
- categories/article ≤ 3

TOTAL 17731 UNIQUE 8796 Name Count arts 1776 games 2971 geography 1302 health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
Name Count arts 1776 games 2971 geography 1302 health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
arts 1776 games 2971 geography 1302 health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
games 2971 geography 1302 health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
geography 1302 health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
health 697 history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
history 1051 industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
industry 1419 law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
law 697 life 462 mathematics 899 matter 703 nature 814 people 1872
life 462 mathematics 899 matter 703 nature 814 people 1872
mathematics 899 matter 703 nature 814 people 1872
matter 703 nature 814 people 1872
nature 814 people 1872
people 1872
philosophy 226
reference works 1240
religion 856
science and technology 420
society 326

Corpus Issues II - Unintuitive Labels

Creating a Classifier

- which one? problem is multiclass and multilabel
 - Logistic Regression
 - multiclass, supports probabilities
 - Stochastic Gradient Descent
 - customizable loss functions
 - "hinge": SVM, multiclass, good results, no probabilities
 - "log": like logistic regression, multiclass, probas
 - OneVsRest with Logistic Regression
 - multiclass and multilabel
 - fits one classifier per class
 - chosen because most appropriate, works good enough (probabilities from multiclass-only classifieres seemed plausible, though)

Optimization

- remove footer sections
- remove wiki markup
- no stemming or lemmatization
 - really slow (+60 minutes)
 - didn't improve scores
- TfidfVectorizer instead
 - term-frequencies
 - GridSearch for tuning parameters
 - best result after 2 hours of fitting (54 fits)
 - max_df: 0.75
 - min_df: 100
 - ngram_range (1,2)
 - vocabulary of vectorizer ~ 45.000 terms

• pseudo-measure for quality of results

$$mean\left(\frac{|prediction \bigcap labels|}{|labels|}\right)$$

- example: if 2 of 3 labels are correctly predicted, classifier achieved 66% accuracy
- classifier achieves ~ 60% accuracy
- why?
 - default score function for multi-label is
 "subset accuracy which is a harsh metric"

Room for Improvement

- additional classifiers for subcategories
- rebalance corpus, analyze causes for imbalance
- add sample weights based on distance to main topics
- tuning of parameters for
 - arbitrary depth, maybe dynamic per category
 - article limits
 - o overlap
- define metrics for quality of articles (ex. only good and featured)
 - this was an issue due to overlap, without limiting depth every article belonged to every category
- more thorough gridsearch for tuning classifier-parameters
- computing-resources are the limit

Demo

Q&A

Thank You