
Wi·cc·i·fh·y
Christian Caspers, Felix Hamann

Information Retrieval & Link Detection

2

What do we need
A disambiguator and a link detector

● Training is based on a combination of the link structure and wikitext
● Samples are page titles of wikipedia articles
● For training we need a model of wikipedia’s link structure
● Ambiguities as defined by anchor text
● Counts for mentions of articles from other articles

3

Goals for information retrieval
● Necessary metrics for building training/test data should be stored in memory
● Random access to the text of all wikipedia articles
● Problem: Size and amount of the data

4

How to handle the data
● It is not possible to extract all required data at once
● Incremental improvement of our data set

Stage I

Operate on raw data

Populate database

Build index

Stage II

Operate on index

Extract information

Improve data quality

Stage III

Create training data

Train classifier

Test and evaluate

5

Used databases
● Redis as in-memory data structure server for metrics

○ Really, really fast (access via loopback interface)
○ Proven python client: redis-py
○ Offers all data structures we need: sets, counter and key-value mapping
○ Transactional operations - important for testing and bug-fixing
○ Can become the bottleneck when accessing data with many clients
○ Concurrent access when spawning multiple processes

● Postgresql as database for wikitext
○ Random access via page title if armed with an index
○ Proven python client: psycopg2
○ In our case really easy to access (no complicated schema)

6

Stage I - Parsing Wikipedia
● Flat XML of 17092650 page elements
● 56G in size - cannot reside in memory
● No random access of elements
● Splitting the data is not easy

○ Pages are not uniformly distributed
○ No structural information easily obtainable

Our approach:

● Several processes crawl concurrently
● Each process parses its range

7

Stage I - Results
Postgres is populated and there’s no need to touch it anymore

Redis built the initial index structure

● Sets for senses, redirects and categories
● A queue of senses for worker pools
● Lookup table for redirects
● In total we imported

○ 5.289.723 senses
○ 7.273.736 redirects
○ 1.492.879 categories

8

Stage II - Extracting metrics
● We need backlink sets and mentioning counts
● All ambiguous terms must be extracted
● Should not take ages to do so: worker pool
● For keeping a somewhat sane memory footprint: 3-grams

Redis is suited well to incrementally improve data quality - dump.rdb

1. Extract links and ambiguous terms [[title|target]]
2. Merge redirects and ambiguities
3. Count mentions

his memory consumption

it’s over 9000m

9

Stage II - The extraction pipeline
Links and Ambiguities

150.397.424 Links!
4.725.190 Ambiguities

It’s getting hot in here
(memory wise)

Convert ambiguities
and redirects

 4.153.317 ambs removed
 705.770 redirects to ambs
3.442.783 already senses

Prune to 3-grams

 Could’ve done this earlier
but now is the time.

Removed a total of 5G
memory consumption

Pickle some indexes

Redis becomes a bottleneck
for member queries

Distribute frozensets

Extract Mentions

1.260.364.692

Now we have consistent
data for training etc.

10

Stage III - Required features
● Disambiguator

○ Commonness (cardinality of backlink sets per ambiguity)
○ Relatedness (normalized ratio of backlink sets)
○ Context Quality (sum of all averages between relatedness and link probability)

● Link Detector
○ Two link probabilities (average and maximum)
○ Two relatedness measures (per term and the average)
○ Confidence of the disambiguator (average and maximum)
○ Generality
○ Location and Spread

11

Stage III - Training the classifiers
● Unfortunately not much data to show - we stick close to the paper
● Pages are extracted randomly with a link count threshold (100)
● Training and test data is available for download (50, 100, 500) pages

○ ~14k samples per 100 pages
○ all necessary metrics are computed

● The disambiguator performs good: ~93% accuracy
○ sklearn’s c4.5 implementation
○ maximum tree height set to 5 performed best
○ changing minimum counts for leaves did not change much
○ confidence lies around 90%

● The link detector is implemented, but with a bug in the algorithm
○ so all data presented would be a lie

12

What went well

● Using redis as volatile data storage
○ incremental dumps
○ live inspection

● Extracting data with worker pools
● Calculating the metrics for the training data
● We have a consistent model of the whole wikipedia

What did not

● Redis becomes a bottleneck when doing many requests (even with pipelining)
● Implementing the data extraction took too long
● Lots of unnecessary data from mediawiki text (parsing is so slow)

General

● We are case-insensitive - wikipedia is not
● Memory leaks kill, copy-on-write only really works for immutable types
● Premature optimization is the root of all evil 13

Text Categorization

14

Wikipedia Categories
● categories have

○ multiple parents
○ multiple children

● (probably) acyclic graph
● categories and articles reference

parent categories

● Main topic classifications
○ kind-of root-category
○ 17 subcategories
○ only few directly associated

articles

15

Building a Corpus for Classification I
● assign articles to categories

○ need to reverse relations
○ happens during data-import

● get enough articles
● no article exists in only one category
● depth creates overlap

○ the deeper the article within
Wikipedia’s structure, the more main
topics are associated with it

● overlap creates noise
● multiclass, multilabel

corpus wanted

● 17 main categories
● 10,000 samples/category
● max 3 categories per article
● theoretically 170.000 samples

○ ~3% of all articles

16

Building a Corpus for Classification II
● iterate persisted graph
● for each main category

○ search breadth first for articles
○ memorize visited categories
○ memorize articles
○ loop over subcategories

● stop criteria
○ depth
○ number of articles per category
○ no subcategories left

● remove articles with > 3 categories
● create split 75:25
● remove overlap from training
● remove wiki markup

● Results
○ wanted 17 * 10.000 articles
○ received only 20.000 articles
○ Train: 14041
○ Test: 6442

● numbers vary slightly for each run
due to redis’ set operations

17

Corpus Issues I - Overlap and Balance
● search 10K articles, depth 10 ● pruned corpus

● categories/article ≤ 3

18

Corpus Issues II - Unintuitive Labels

19

Creating a Classifier
● which one? problem is multiclass and multilabel

○ Logistic Regression
■ multiclass, supports probabilities

○ Stochastic Gradient Descent
■ customizable loss functions
■ “hinge”: SVM, multiclass, good results, no probabilities
■ “log”: like logistic regression, multiclass, probas

○ OneVsRest with Logistic Regression
■ multiclass and multilabel
■ fits one classifier per class
■ chosen because most appropriate, works good enough

(probabilities from multiclass-only classifieres seemed plausible, though)

20

Optimization
● remove footer sections
● remove wiki markup
● no stemming or lemmatization

○ really slow (+60 minutes)
○ didn’t improve scores

● TfidfVectorizer instead
○ term-frequencies
○ GridSearch for tuning parameters
○ best result after 2 hours of fitting (54 fits)

■ max_df: 0.75
■ min_df: 100
■ ngram_range (1,2)

○ vocabulary of vectorizer ~ 45.000 terms

● pseudo-measure for quality of results

● example: if 2 of 3 labels are correctly
predicted, classifier achieved 66%
accuracy

● classifier achieves ~ 60% accuracy
● why?

○ default score function for multi-label is
“subset accuracy which is a harsh metric”

21

Room for Improvement
● additional classifiers for subcategories
● rebalance corpus, analyze causes for imbalance
● add sample weights based on distance to main topics
● tuning of parameters for

○ arbitrary depth, maybe dynamic per category
○ article limits
○ overlap

● define metrics for quality of articles (ex. only good and featured)
○ this was an issue due to overlap, without limiting depth every article belonged

to every category

● more thorough gridsearch for tuning classifier-parameters
● computing-resources are the limit

22

Demo

23

Q&A

24

Thank You

25

