

Anwendungen der KI

- Sommersemester 2018 -

Kapitel 03: Information Retrieval (Teil II)

Prof. Dr. Adrian Ulges B.Sc. Informatik (AI, ITS, MI, WI) Fachbereich DCSM Hochschule RheinMain

Outline

- 1. Benchmarking
- 2. Relevance Feedback und Query Expansion
- 3. Probabilistisches Retrieva
- 4. PageRank

Benchmarking

Benchmarking = Beurteilung der **Güte der Ergebnisse** eines IR-Systems

Warum ist Benchmarking wichtig?

- Betriebswirtschaftliche Steuerung
- Grundlage der Optimierung von Parametern!
- Weiterentwicklung von IR-Systemen

Praxisbeispiel: Web-Suchmaschine

- Entwicklung eines neuen Features für die Scoring-Funktion (z.B. PageRank)
- Umleitung eines Anteils der Queries auf ein Zweitsystem
- Vergleichendes Benchmarking (A/B-Testing)

Benchmarking: Formalisierung

- Wir stellen einen Test-Query q
- Das System liefert eine Teilmenge M des Korpus zurück.
- Im Korpus existiert eine Teilmenge R von relevanten Dokumenten R.
- Ein **perfektes Ergebnis** wäre: M = R.
- Wir unterteilen den Korpus in vier Teilmengen (rechts oben).

Gütemaße

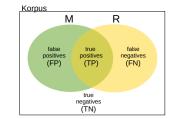
Fehlerrate
$$\frac{\#FP + \#FN}{\#TP + \#TN + \#FP + \#FN}$$

False-Positive-Rate

$$\frac{\#FP}{\#FP + \#TN}$$

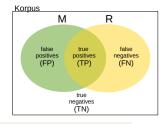
► False-Negative-Rate

$$\frac{\#FN}{\#FN + \#TP}$$



Benchmarking: Precision und Recall

Am **häufigsten** werden im Information Retrieval die folgenden beiden Maße verwendet:



Precision

$$\frac{\#(M\cap R)}{\#M}$$

Recall

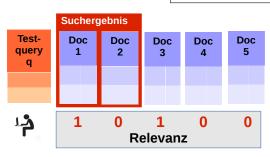
$$\frac{\#(M\cap R)}{\#R}$$

Anmerkungen

- Die Precision verrät uns, welcher Prozentsatz der gefundenen Dokumente auch wirklich relevant ist.
- Der Recall verrät uns, welcher Prozentsatz der relevanten
 Dokumente auch wirklich gefunden wurde.

Precision und Recall: Beispiel

Das IR-System liefert Doc 1, Doc 2



- true positives? Doc 1
- false positives? Doc 2
- true negatives? Doc 4,5
- false negatives? Doc 3

- Fehlerrate = 2 / 5
- ▶ False-Positive-Rate = 1 / 3
- ▶ False-Negative-Rate = 1 / 2
- Recall = 1 / 2
- ▶ Precision = 1 / 2

Score-basierte Evaluation

Einschränkung bisher

- IR-Systeme liefern nicht nur eine Ergebnismenge, sondern sie ranken Ergebnisse anhand eines Scores.
- ▶ Das Benchmarking sollte dies berücksichtigen: Wo in der Ergebnisliste taucht ein relevantes Dokument auf?

Ansatz 1

- Schneide die Ergebnisliste an Position K ab.
- Standardmaß: "Precision at Rank K" (z.B. Prec@10)
- Interpretation: Wieviele Treffer befinden sich z.B. auf der ersten Ergebnisseite?

Recall-Precision-Curves (RPCs)

Ansatz 2: RPC

- Lassen wir das IR-System mehr und mehr Ergebnisse liefern, erhöht sich der Recall. Die Precision verringert sich tendenziell.
- Wir variieren die Länge der Ergebnisliste und messen jeweils Precision und Recall.
- ► Es entsteht eine **Kurve**, die sogenannte **Recall-Precision-Curve** (**RPC**).

 recall
 prec.

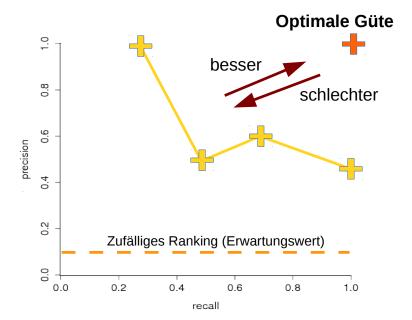
 0.25
 1.00

 0.50
 0.50

 0.75
 0.60

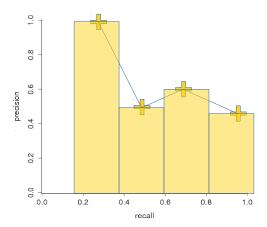
 1.00
 0.44

RPCs: Beispiel



RPCs: AP und MAP

- Aus der RPC-Kurve leiten wir einen globalen Indikator ab:
 Die Average Precision (AP) (= markierte Fläche = Mittlung aller Precision-Werte der RPC).
- Durch Mittlung über alle Test-Queries erhalten wir die Mean Average Precision (MAP).



Benchmarking: Diskussion

Was sind die **Einschränkungen** des hier vorgestellten Benchmarking-Ansatzes?

- Binäre Relevanz trifft oft nicht zu (Beispiel: Benutzer findet die Lösung seines Problems durch Kombination mehrerer Zieldokumente).
- Die Labels (Ground Truth) ist evtl. subjektiv.
- ▶ Die Labels (Ground Truth) ist künstlich.
- Präsentation der Ergebnisse / UX nicht mit berücksichtigt.
- Die Diversität der Ergebnisse ist nicht berücksichtigt.

...

Benchmarking: Standard-Datensätze

TABLE 4.3 Common Test Corpora

Collection	NDocs	ΝΩτуε	Size (MB)	Term/Doc	Q-D RelAss
ADI	82	35			
AIT	2109	14	2	400	>10,000
CACM	3204	64	2	24.5	
CISI	1460	112	2	46.5	
Cranfield	1400	225	2	53.1	
LISA	5872	35	3		
Medline	1033	30	1		
NPL	11,429	93	3		
OSHMED	34,8566	106	400	250	16,140
Reuters	21,578	672	28	131	
TREC	740,000	200	2000	89-3543	» 100,000

Benchmarking: Daten-Akquise

- Noch eine Einschränkung: Aufwand zur Annotation
- Beispiel: 1 mio. Dokumente, 2000 Queries, 2,5
 Sekunden pro Label, 10\$ pro Stunde
 - → 14 Mio. \$ Gesamtkosten für Annotation
- Wie kommen wir mit weniger Labels aus?

Beliebter Ansatz: Pooling

- Wir wollen mehrere Systeme vergleichen.
- Wir fassen die die Top-N-Ergebnisse der verschiedenen Systeme zum sogenannten Pool zusammen.
- Wir annotieren nur den Pool.
- Wir nehmen an, dass alle Dokumente außerhalb des Pools nicht-relevant sind.

Outline

- 1. Benchmarking
- 2. Relevance Feedback und Query Expansion
- 3. Probabilistisches Retrieva
- 4. PageRank

Relevance Feedback: Motivation

Zurück zu unseren zwei **Schlüssel-Herausforderungen** im Information Retrieval

- 1. Die Unstrukturiertheit der Zieldaten
- 2. Die Wahl des "richtigen" Queries

Häufiges Problem: Geringer Recall

Query: "Trump speaks to the media in Illinois"

Dokument: "The President greets the press in Chicago."

- Um den Recall zu erhöhen, versucht der Benutzer seine Anfrage iterativ zu verbessern.
- Die "richtigen" Query-Terme zu finden ist schwer.
- ▶ Aber: Ein Treffer-Dokument zu bewerten (relevant/irrelevant) ist leicht!

Relevance Feedback: Pseudo-Code

- 1. Der Benutzer formuliert eine initiale Anfrage q_0 .
- 2. Setze k := 0.
- 3. Führe eine Suche mit q_k durch.
- 4. Der Benutzer bewertet einige Suchergebnisse als relevant/irrelevant (Feedback).
- 5. Eine verbesserte Anfrage q_{k+1} wird automatisch berechnet.
- 6. Setze k := k + 1.
- 7. Gehe zu Schritt 3.

Feedback kann explizit oder implizit sein

Das Rocchio-Modell

Schlüsselfrage: Wie berechnen wir q_{k+1} aus q_k und Feedback?

► Zwei Ansätze: (1) Rocchio, (2) probabilistisch (später).

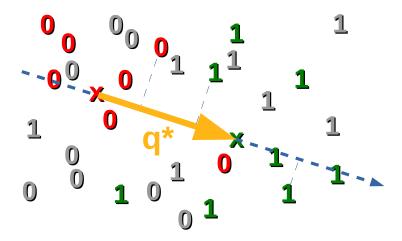
Relevance Feedback nach Rocchio

- Basiert auf dem Vektorraum-Modell: Queries und Dokumente sind (Bag-of-Words-)Vektoren q / d.
- Das Feedback des Benutzers resultiert in zwei (kleinen)
 Mengen: Als relevant/irrelevant markierte Dokumente
 R⁺ und R⁻.
- ▶ Wir berechnen einen Hilfsvektor **q*** ...

$$\mathbf{q}^* = \left(\frac{1}{\#R^+} \sum_{\mathbf{d}^+ \in R^+} \mathbf{d}^+\right) - \left(\frac{1}{\#R^-} \sum_{\mathbf{d}^- \in R^-} \mathbf{d}^-\right)$$

• ... und wählen (im einfachsten Fall): $\mathbf{q}_{k+1} \coloneqq \mathbf{q}_0 + \mathbf{q}^*$

Das Rocchio-Modell: Illustration



Das Rocchio-Modell: Erläuterung

Query: "refugees"

Der User bewertet die Dokumente...

- + Syria refugee crisis: Facts you need to know
- + number-syrian-refugees-passes-million
 - Australia's Immoral Refugees policy
- + Syrian Refugees -- the latest from Al Jazeera
 - Climate Refugees: Climate Change and Migration

Was ist der Effekt von Relevance Feedback?

- Zusätzliche Terme wie 'syria' oder 'aleppo' bekommen im Query-Vektor q auf nun ein Gewicht > 0.
- Der Query wird "expandiert".
- Alternativ können wir dem Query einfach einige Top-Terme mit hohem (TF-IDF)-Gewicht (gemittelt über R⁺) hinzufügen.

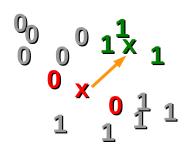
Das Rocchio-Modell: Vollständig

$$\mathbf{q}_{k+1} = \boldsymbol{\alpha} \cdot \mathbf{q}_0 + \overbrace{\boldsymbol{\beta} \cdot \left(\frac{1}{\#R^+} \sum_{\mathbf{d}^+ \in R^+} \mathbf{d}^+\right) - \boldsymbol{\gamma} \cdot \left(\frac{1}{\#R^-} \sum_{\mathbf{d}^- \in R^-} \mathbf{d}^-\right)}^{\approx \mathbf{q}^*}$$

- $\alpha = 1, \beta = 0, \gamma = 0 \rightarrow q_{k+1} = q_0$ (kein Relevance Feedback)
- Gibt der Nutzer **mehr** Feedback, **erhöhen** wir β und γ
- ▶ Häufig werden positive Beispiele stärker gewichtet als negative $(\beta > \gamma)$. Typische Werte: $\alpha = 1, \beta = 0.75, \gamma = 0.15$ [1]

Achtung

- Wenn der User nur wenige Dokumente bewertet, drohen Fehler
- Wir bezeichnen diesen Effekt als Overfitting (später mehr).



Pseudo Relevance Feedback

- Problem: Relevance Feedback erfordert ein händisches Eingreifen seitens des Nutzers.
- Beispiel-Websuchmaschine: Nur 4% aller User nutzen Feedback (oft reicht ein Treffer) [1].
- Aber: Relevance Feedback hilft, den Recall zu erhöhen.

Question Answering?

- Recall ist wichtig!
- Aber: Händisches Eingreifen nicht möglich.

Ansatz: Pseudo – Relevance Feedback

- Nehme an, der Nutzer hätte die ersten K Dokumente der Trefferliste als relevant gelabelt.
- Wende dann die oben genannten Relevance
 Feedback-Techniken an.
- Weniger genau als Relevance Feedback (Lernen von geschätzten Labels!), aber vollautomatisch!

Query Expansion

- Relevance Feedback-Techniken (siehe oben) erweitern den Query mit Termen aus den Ergebnisdokumenten.
- Gibt es andere Strategien, den Query zu erweitern?

Query Expansion

Wir fügen den Query-Termen ähnliche Terme hinzu.

```
'laptop' → 'notebook'
```

Was sind Quellen "ähnlicher" Terme?

Expansion mit Synonymen aus einem Thesaurus
 (z.B. WordNet). Problem: Thesauri sind statisch.

```
'burning smartphone' → 'samsung'
```

Statistisches Lernen von Term-Ähnlichkeiten (später).

Outline

- 1. Benchmarking
- 2. Relevance Feedback und Query Expansior
- 3. Probabilistisches Retrieval
- 4. PageRank

Probabilistisches Information Retrieval

- IR bedeutet, unter Unsicherheit die "richtigen"
 Dokumente zu finden.
- Für solche Fälle existiert ein mächtiges Werkzeug: Die Wahrscheinlichkeitsrechnung.
- Wir betrachten das einfachste Probabilistische IR-Modell: Das Binary Independence Model (BIM)

Formalisierung

- ▶ Dokumente und Queries werden mit Booleschen Vektoren beschrieben: $\mathbf{d} = (d_1, ..., d_n)$ und $\mathbf{q} = (q_1, ..., q_n)$.
- Wir definieren eine Zufallsvariable R: Gegeben einen Query q, ist Dokument d relevant (R=1) oder nicht (R=0)?
- Ansatz: Ranke Dokumente nach (absteigender)
 Relevanz-Wahrscheinlichkeit P(R = 1 | d, q).

Wir wenden die Bayes'sche Regel an und formen die Relevanz-Wahrscheinlichkeit um:

$$P(R=1|\mathbf{d},\mathbf{q}) = \frac{P(\mathbf{d}|R=1,\mathbf{q}) \cdot P(R=1|\mathbf{q})}{P(\mathbf{d}|\mathbf{q})}$$

Den Score wählen wir so, dass die Dokumente d nach Relevanz-Wahrscheinlichkeit sortiert werden:

$$s(\mathbf{q}, \mathbf{d}) = \frac{P(R = 1 | \mathbf{d}, \mathbf{q})}{P(R = 0 | \mathbf{d}, \mathbf{q})}$$

$$= \frac{P(\mathbf{d} | R = 1, \mathbf{q}) \cdot P(R = 1 | \mathbf{q}) : P(\mathbf{d} | \mathbf{q})}{P(\mathbf{d} | R = 0, \mathbf{q}) \cdot P(R = 0 | \mathbf{q}) : P(\mathbf{d} | \mathbf{q})}$$

$$= \frac{P(\mathbf{d} | R = 1, \mathbf{q}) \cdot P(R = 1 | \mathbf{q})}{P(\mathbf{d} | R = 0, \mathbf{q}) \cdot P(R = 0 | \mathbf{q})}$$
// beeinflusst nicht das Ranking!
$$\propto \frac{P(\mathbf{d} | R = 1, \mathbf{q})}{P(\mathbf{d} | R = 0, \mathbf{q})}$$

- ▶ $P(\mathbf{d} | R = 1, \mathbf{q})$ gibt an, wie typische **relevante Dokumente** aussehen sollten (**d** gibt an, welche Terme in einem Dokument vorkommen).
- Wir nehmen an, die einzelnen Terme seien unabhängig:

$$P(\mathbf{d}|R=1,\mathbf{q}) = P(d_1|R=1,\mathbf{q}) \cdot P(d_2|R=1,\mathbf{q}) \cdot \dots \cdot P(d_n|R=1,\mathbf{q})$$
$$= \prod_{i=1}^{n} P(d_i|R=1,\mathbf{q})$$

Die Scoring-Funktion ändert sich zu:

$$s(\mathbf{q}, \mathbf{d}) = \frac{P(\mathbf{d}|R=1, \mathbf{q})}{P(\mathbf{d}|R=0, \mathbf{q})} = \prod_{i} \frac{P(d_{i}|R=1, \mathbf{q})}{P(d_{i}|R=0, \mathbf{q})}$$

Wir definieren die Wahrscheinlichkeiten, dass ein relevantes (bzw. nicht-relevantes) Dokument einen Term t_i enthält:

$$\begin{aligned}
\mathbf{p}_i^+ &:= P(d_i = 1 | R = 1, \mathbf{q}) \\
\mathbf{p}_i^- &:= P(d_i = 1 | R = 0, \mathbf{q})
\end{aligned}$$

Beispiel: Query = "Abraham Lincoln", Term t_i = "president"

$$\rightarrow p_i^+ = 0.7, \quad p_i^- = 0.0001$$

▶ Die **Scoring-Funktion** ändert sich zu:

$$s(\mathbf{q}, \mathbf{d}) = \prod_{i} \frac{P(d_{i}|R=1, \mathbf{q})}{P(d_{i}|R=0, \mathbf{q})}$$
$$= \prod_{i:d_{i}=1} \frac{p_{i}^{+}}{p_{i}^{-}} \cdot \prod_{i:d_{i}=0} \frac{1-p_{i}^{+}}{1-p_{i}^{-}}$$

Letzte Umformung (hang in there!)

- Momentan ist s(q, d) noch sehr teuer zu berechnen (→ Produkt über alle Terme des Vokabulars)
- ► Zusatzannahme: Kommt ein Term t_i nicht im Query vor, gilt $p_i^+ = p_i^- \rightarrow$ der Term kürzt sich weg.

$$s(\mathbf{q}, \mathbf{d}) = \prod_{i:d_i=1, \mathbf{q}_i=1} \frac{p_i^+}{p_i^-} \cdot \prod_{i:d_i=0, \mathbf{q}_i=1} \frac{1-p_i^+}{1-p_i^-}$$

Probabilistisches IR: Schätzung

Schlüsselfrage: Wie bestimmen wir p_i^+ und p_i^- ?

Lösung 1: Einfaches Abzählen

$$p_i^+ \coloneqq \frac{\# \text{ relevante Dokumente die } t_i \text{ enthalten}}{\# \text{ relevante Dokumente}}$$

$$p_i^- \coloneqq \frac{\# \text{ nicht-relevante Dokumente die } t_i \text{ enthalten}}{\# \text{ nicht-relevante Dokumente}}$$

Lösung 2: Abzählen mit Glättung (Warum?)

$$\begin{aligned} p_i^+ &\coloneqq \frac{\# \text{ relevante Dokumente die } t_i \text{ enthalten } + 0.5}{\# \text{ relevante Dokumente } + 1} \\ p_i^- &\coloneqq \frac{\# \text{ nicht-relevante Dokumente die } t_i \text{ enthalten } + 0.5}{\# \text{ nicht-relevante Dokumente } + 1} \end{aligned}$$

Probabilistisches IR: Schätzung

Problem

Wir wissen **nicht welche** Dokumente relevant (bzw. nicht-relevant) sind! Wie **berechnen** wir p_i^+ und p_i^- ?

Lösung für nicht-relevante Dokumente (p_i^-) ?

- ▶ Idee: Fast alle Dokumente sind nicht-relevant!
- Approximation (sehr leicht zu berechnen!)

$$p_i^- := \frac{\text{\# alle Dokumente die } t_i \text{ enthalten}}{\text{\# alle Dokumente}}$$

Lösung für relevante Dokumente (p_i^+) ?

- ▶ Idee: Terme die im Query vorkommen sind etwas häufiger!
- Approximation (auch leicht zu berechnen!)

$$p_i^+ := \left\{ \begin{array}{l} \frac{1}{3} + \frac{2}{3} \cdot \frac{\text{\# Dokumente mit } t_i}{\text{\# alle Dokumente}} & \text{falls } t_i \text{ im Query vorkommt} \\ p_i^- & \text{sonst} \end{array} \right.$$

Probabilistisches IR: Relevance Feedback

Lösung 2: Relevance Feedback

- Es gibt eine noch bessere Lösung, um p_i⁺ zu schätzen: Relevance Feedback
- Nach seiner Suche markiert der Benutzer eine Menge von Dokumenten D_R als relevant.
- Idee: Kommt ein Term häufig in den Dokumenten D_R vor, sollte seine Wahrscheinlichkeit p_i⁺ steigen.
- Wir verfeinern unsere Schätzung für p_i⁺:

$$p_i^+ \leftarrow (1 - \alpha) \cdot p_i^+ + \alpha \cdot \frac{\# \text{ Dokumente in } D_R \text{ die } t_i \text{ enthalten}}{\# D_R}$$

Outline

- 1. Benchmarking
- 2. Relevance Feedback und Query Expansion
- 3. Probabilistisches Retrieva
- 4. PageRank

PageRank

Idee

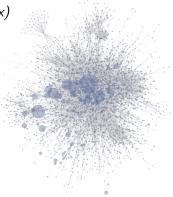
- Verwende die Link-Struktur zwischen Dokumenten, um die Genauigkeit von Information Retrieval zu verbessern.
- ► Ein Link ist ein Indikator für die Autorität des Link-Ziels!

Beispiele

- Wissenschaftliches Zitieren (H-Index)
- Anzahl der Follower auf Twitter

Websites/Dokumente, die häufig gelinkt werden...

- ... besitzen eine
 "hohe Autorität"
- ... erhalten höhere Scores
- ... werden durch Crawler häufiger besucht.



PageRank: Einführung

- Im Folgenden: Der PageRank [3] als ein populäres Maß für Autorität
- Dieser dient als Parameter in Suchmaschinen (→ Boost-Faktor für Dokument-Scores)

Ansatz 1

- Autorität = Anzahl der eingehenden Links
- Problem: Links von "wichtigen" Seiten sollten bedeutender sein als Links von "unwichtigen" Seiten
- Problem: Anfälligkeit für Spam (Erzeugung künstlicher Links, um den eigenen PageRank zu optimieren)

Ansatz 2

- "Wird eine Seite von vielen wichtigen Seiten verlinkt?"
- ▶ **Problem** ("Henne-Ei"): Um Seite *X* zu bewerten, müssen wir die Bewertung von Seiten *Y* kennen.

Das Random Surfer Modell

Ansatz 2: Formalisierung

- Eine Seite ist wichtig, wenn sich ein zufällig surfender Webnutzer ("random surfer") oft dort aufhält.
- Der Nutzer beginnt bei einer zufälligen Seite p₀
- ▶ Der Nutzer **bewegt sich** iterativ von einer Seite p_n zur nächsten (p_{n+1}) , indem er einem zufälligen von p_n ausgehenden **Link folgt**.
- Alle ausgehenden Links einer Seite sind dabei gleich wahrscheinlich.

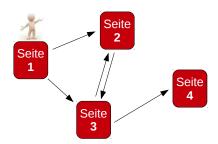
Schlüsselfrage

Wie ist der Aufenthaltsort des zufälligen Surfers über die Webseiten verteilt?

Das Random Surfer Modell: Beispiel

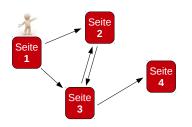
*

- Der Nutzer beginnt bei Seite 1
- Nach einem Schritt:
 - ... ist er mit 50% Wahrscheinlichkeit bei Seite 2
 - ... ist er mit 50% Wahrscheinlichkeit bei Seite 3
- Nach zwei Schritten...?
- Nach drei Schritten…?



- ► Ein **Link** von Seite *j* zu Seite *i* ist ein **Tupel** (*j*, *i*)
- ▶ Wir bezeichnen die Menge aller Links mit L.
- \mathbb{L} definiert eine Übergangsmatrix T:

$$T_{ij} = P(p_{n+1} = i | p_n = j) = \mathbf{1}_{(j,i) \in \mathbb{L}} \cdot \frac{1}{\#\{k \mid (j,k) \in \mathbb{L}\}}$$

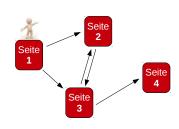


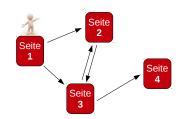
Ein User auf Seite 3 bewegt sich mit Wahrscheinlichkeit 1/2 zu Seite 2

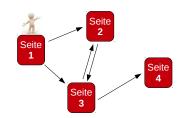
$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \end{pmatrix}$$

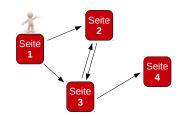
*

- Nach n Schritten befindet sich der Surfer mit einer bestimmten
 Wahrscheinlichkeit auf jeder Seite.
- Wir fassen die Wahrscheinlichkeiten in einem Vektor p_n zusammen (wo ist der Nutzer gerade mit welcher Wahrscheinlichkeit?)









- ► **Problem**: **Sackgassen** (Page 4) → Folgezustand undefiniert
- ► Trick: "Teleporting" → Wir erlauben zufällige gleichverteilte Sprünge zu einer beliebigen anderen Seite.
- 1. Sackgasse: Springe zufällig zu beliebiger Seite.
- 2. **nicht in Sackgasse**: Springe mit Wahrscheinlichkeit α zu beliebiger anderer Seite.

Geglättete Übergangsmatrix T' (sei k die Anzahl der Seiten)

$$T'_{ij} := \begin{cases} 1/k & \text{falls Seite } j \text{ Sackgasse} \\ (1-\alpha) \cdot T_{ij} + \alpha \cdot 1/k & \text{sonst} \end{cases}$$

Beispiel ($\alpha = 0.1$)

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0.5 & 0 & 0.5 & 0 \\ 0.5 & 1.0 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \end{pmatrix} \quad T' = \begin{pmatrix} 0.025 & 0.025 & 0.025 & 0.25 \\ 0.475 & 0.025 & 0.475 & 0.25 \\ 0.475 & 0.925 & 0.025 & 0.25 \\ 0.025 & 0.025 & 0.475 & 0.25 \end{pmatrix}$$

Markov-Ketten

Wir nennen unser mathematisches Modell eine Markov-Kette:

Definition (Markov-Kette)

Gegeben sei ein Zustandsraum $S = \{1, 2, ..., n\}$. Ein stochastischer Prozess generiert eine Sequenz von Zuständen $S_1, S_2, S_3, \in S$, so dass für alle $n \in \mathbb{N}$ gilt:

$$P(S_{n+1} = s_{n+1} \mid S_1 = s_1, ..., S_n = s_n) = P(S_{n+1} = s_{n+1} \mid S_n = s_n)$$

Dann nennen wir den Prozess eine diskrete, endliche Markov-Kette erster Ordnung.

Anmerkungen

▶ Die Wahrscheinlichkeiten $P(S_{n+1} = j | S_n = i)$ entsprechen den Einträgen unserer Übergangsmatrix T'_{ij} (siehe oben).

Markov-Ketten

Unsere spezielle Markov-Kette ist ...

...irreduzibel:

▶ Wir können jeden Zustand (d.h. jede Seite) von jedem anderen Zustand (d.h. von jeder anderen Seite) aus erreichen.

... aperiodisch:

Es gibt für jeden Zustand mindestens zwei Zyklen teilerfremder Länge.

Beide Eigenschaften...

... sind durch das Teleporting garantiert (warum?)

Markov-Ketten: Gekritzel

Random Surfer: Konvergenz

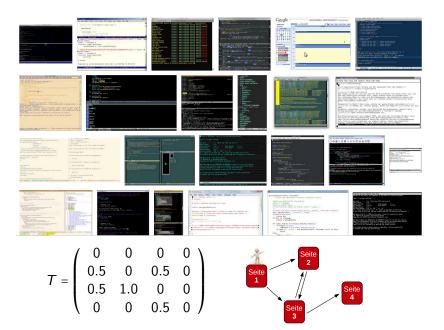
Für irreduzible, aperiodische Markov-Ketten gilt:

- ▶ Die Folge **p**₁, **p**₂, **p**₃, ... konvergiert gegen den **Grenzwert p**.
- Umgangssprachlich ausgedrückt: "Wenn der Random Surfer unendlich lange surft, erhalten wir eine fixe Verteilung seines Aufenthaltsortes über die Seiten".
- Dieser Grenzwert p sollte sich nicht ändern, wenn der Surfer einen Schritt macht, d.h.

$$T \cdot \mathbf{p} = \mathbf{p}$$

- Wir sehen: p ist ein Eigenvektor von T!
- ▶ Wir nennen p auch die stationäre Verteilung von T'
- **p** hängt nicht von \mathbf{p}_1 ab (d.h., es ist egal, wo der random surfer startet).

Random Surfer: Beispiel



Random Surfer: Konvergenz

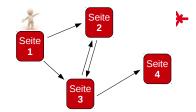
Der "PageRank" einer Seite...

- ... ist nichts anderes als der zugehörige Eintrag in der stationären Verteilung p.
- Wir berechnen p, indem wir (ausgehend von einem zufälligen Startvektor p₁) immer wieder mit T multiplizieren (d.h., wir lassen den Surfer immer wieder einen Schritt durchführen).

$$\mathbf{p} = \lim_{k \to \infty} T^k \cdot \mathbf{p}_1 = \dots \cdot T \cdot T \cdot T \cdot \mathbf{p}_1 = \begin{pmatrix} 0.08164946 \\ 0.28851762 \\ 0.37805757 \\ 0.25177536 \end{pmatrix}$$
 tation?

Interpretation?

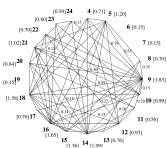
- Seite 1 hat keine Links → hier ist der User selten.
- Seite 3 hat die wertvollsten eingehenden Links.
- Seite 2 hat (im Vergleich mit Seite 4) noch einen zusätzlichen Link, und somit einen etwas höheren PageRank.



Ausblick: TextRank

- Wir können mit PageRank generelle Link-Strukturen analysieren!
- ▶ Beispiel: Wörter und Sätze innerhalb eines Texts
- Wörter (links unten) werden verlinkt falls sie im gleichen Kontext auftauchen
- Sätze (rechts unten) werden verlinkt falls sie ähnliche Worte enthalten.
- PageRank (hier: TextRank [2]) generiert Schlüsselterme und Zusammenfassungen von Texten





References I

- C. Manning, P. Raghavan, and H. Schütze. <u>Introduction to Information Retrieval.</u>
 <u>Cambridge University Press, 2008.</u>
- Rada Mihalcea and Paul Tarau.
 Textrank: Bringing order into texts.
 In Proc. EMNLP 2004, pages 404–411, Barcelona, Spain, July 2004.
- [3] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing order to the web. Technical Report 1999-66, Stanford InfoLab, 1999.